Return to search

Solution biases and pheromone representation selection in ant colony optimisation

Combinatorial optimisation problems (COPs) pervade human society: scheduling, design, layout, distribution, timetabling, resource allocation and project management all feature problems where the solution is some combination of elements, the overall value of which needs to be either maximised or minimised (i.e., optimised), typically subject to a number of constraints. Thus, techniques to efficiently solve such problems are an important area of research. A popular group of optimisation algorithms are the metaheuristics, approaches that specify how to search the space of solutions in a problem independent way so that high quality solutions are likely to result in a reasonable amount of computational time. Although metaheuristic algorithms are specified in a problem independent manner, they must be tailored to suit each particular problem to which they are applied. This thesis investigates a number of aspects of the application of the relatively new Ant Colony Optimisation (ACO) metaheuristic to different COPs.The standard ACO metaheuristic is a constructive algorithm loosely based on the foraging behaviour of ant colonies, which are able to find the shortest path to a food source by indirect communication through pheromones. ACO’s artificial pheromone represents a model of the solution components that its artificial ants use to construct solutions. Developing an appropriate pheromone representation is a key aspect of the application of ACO to a problem. An examination of existing ACO applications and the constructive approach more generally reveals how the metaheuristic can be applied more systematically across a range of COPs. The two main issues addressed in this thesis are biases inherent in the constructive process and the systematic selection of pheromone representations.The systematisation of ACO should lead to more consistently high performance of the algorithm across different problems. Additionally, it supports the creation of a generalised ACO system, capable of adapting itself to suit many different combinatorial problems without the need for manual intervention.

Identiferoai:union.ndltd.org:ADTP/238554
CreatorsMontgomery, James
PublisherePublications@bond
Source SetsAustraliasian Digital Theses Program
Detected LanguageEnglish
SourceTheses

Page generated in 0.0017 seconds