In a high competitive market, the development of new alloys, new applications, price pressure and increases in product forces quality wire manufacturers to ask for increased mechanical characteristics without losing conductivity. As a particular example, development of new copper alloys such as CuZr, CuSn, CuMg and CuAg have been developed for automotive cables. Continuous extrusion is currently the most prevalent manufacturing technology in terms of chemical composition, mechanical properties and electrical properties, resulting in the production of high quality rods. However, continuous casting has good potential to also be adapted to the mass production of various copper alloy wires. Comparison of the continuous casting process to other thermal methods such as continuous extrusion highlighted that, in general, the mechanical properties of continuous cast materials are lower than that of material from thermomechanical methods. However, continuously cast alloys rods are cheap to produce and simple to manufacture. So, the key aims of this research were (a) to increase the understanding of the solidification behaviour of some industrially important continuously cast non-ferrous alloys, (b) to define an increased range of alloys and downstream processing techniques which could be performed using continuous casting technology, (c) to determine improved continuous casting process validation capabilities and (d) to define new capabilities in terms of casting equipment. The majority of this PhD thesis was focused on improving the current continuous casting technologies and development of casting capability of a range of copper and non-copper alloys. The analysis in this PhD thesis illustrated that the metallurgical and mechanical properties of components mainly produced by continuous casting are acceptable, and that this method could be a replacement production method for materials such as lead alloys and various copper alloy rod, e.g. CuMg and CuAg. However, in the case of Deoxidized High Phosphorus (DHP) copper tubes, the performance of the as-cast material was significantly lower than that of from extrusion or planetary rolling process. This PhD thesis also makes comment on the parameters controlling the solidification process in order to improve the quality of as cast alloys rods/tubes. Using specific casting parameters, a significant difference based on tensile strength and elongation percentage has been illustrated, and it was found that these parameters could improve the mechanical properties of continuously cast copper rods and tubes. This significant difference is as a result only of the change in casting parameters, with no difference in the chemical composition of the material, or the general method of production. These parameters were (1) water flow rate, (2) casting speed, (3) pull distance, (4) melt temperature, (5) cleanout cycle, (6) continuous casting direction and (7) super-cooler size. The new knowledge created and understanding gained during the course of this research improved the company’s capability in the marketplace, enabling it to supply equipment with improved competitive capabilities and the potential to enter new markets, leading to sales growth in existing sectors and significant longer-term growth into new technically challenging application areas.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:709711 |
Date | January 2017 |
Creators | Bagherian, Ehsaan-Reza |
Contributors | Abdolvand, Amin |
Publisher | University of Dundee |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | https://discovery.dundee.ac.uk/en/studentTheses/180193a3-ef99-4d4f-a56a-78c69d8f35af |
Page generated in 0.0018 seconds