This research attempts to ignite metal halide lamps once with a single-pulse to avoid the problems of uncomfortable light strobes and irregularly high voltage and current stresses on circuit components caused by multiple strikes in conventional electronic ballasts. Metal halide lamps with single-pulse ignition, however, have difficulty in sustaining the lamp arc when operated with a low-frequency square-wave current. Experimental results indicate that the lamp exhibits an extremely small equivalent resistance as the electrode gap has being broken down. In this stage, the ballast has to keep the lamp current not declining to zero in the first half cycle. On the other hand, the lamp acts like open-circuited during commutation when driven by an alternating current. A sufficient energy from the ballast is needed to continue the arc in the next half-cycle. The transition waveform of the lamp arc current after being broken down is analyzed and the required energy for sustaining the lamp arc is calculated accordingly. Based on the investigation results, a starting scenario with appropriately designed circuit parameters for single-pulse ignition can be figured out. The starting scenario has been experimentally implemented on a 70 W metal halide lamp to demonstrate that the metal halide lamp can be successfully started up with single-pulse ignition.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0806112-180302 |
Date | 06 August 2012 |
Creators | Cheng, Jung-Cheng |
Contributors | Tsai-Fu Lin, Tsorng-Juu Liang, Hung-Liang Cheng, Ching-Ran Lee, Chin-Sien Moo |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0806112-180302 |
Rights | user_define, Copyright information available at source archive |
Page generated in 0.0017 seconds