Return to search

Behavior and design of metal building frames using general prismatic and web-tapered steel I-section members

Metal building frames are typically designed using welded prismatic and web-tapered members with doubly-symmetric and/or singly-symmetric cross sections. Until recently, the base U.S. provisions for design of frames with web-tapered members were provided in the AISC ASD (1989) and LRFD (1999) Specifications. Unfortunately, these previous AISC provisions address only a small range of practical designs. As a result, metal building manufacturers have tended to develop their own methods for design of the wide range of nonprismatic member geometries and configurations encountered in practice.
This research develops new design procedures for design of frames using general prismatic members and web-tapered members. An equivalent prismatic member concept utilized in prior research and the prior AISC provisions is generalized to accommodate the broad range of member types and configurations commonly used in metal building industry. Furthermore, the new design procedures incorporate many of the improvements achieved in the AISC (2005&2010) Specifications to metal building frame design. These improvements include a new stability design method, the direct analysis method, more complete considerations of different column buckling limit states (flexural, torsional and flexural-torsional buckling), and improved axial load and flexural resistance provisions. This research develops practical design-based procedures for simplified calculation of the elastic buckling resistances of prismatic and web-tapered members to facilitate the application of the proposed design methods. In addition, this research performs a relatively comprehensive assessment of beam lateral torsional buckling (LTB) behavior and strength of prismatic and web-tapered members using refined virtual test simulation. It is demonstrated that web-tapered members behave in a comparable fashion to prismatic members. Based on the virtual simulation study, recommendations for potential improvement of the AISC LTB resistance equations are provided. Lastly, the strength behavior of several representative metal building frames is studied in detail using the same virtual test simulation capabilities developed and applied for the assessment of the beam LTB resistances.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/33965
Date06 April 2010
CreatorsKim, Yoon Duk
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Detected LanguageEnglish
TypeDissertation

Page generated in 0.0024 seconds