In today’s society large quantities of waste is produced. In Sweden this is reused as fuel for incineration processes where electricity and district heating are generated. However, during this process two hazardous by-products are formed, namely slag and fly ash. These contain relatively high concentrations of heavy metals, which make them harmful to the environment if not taken care of, but also make them valuable resources if the metals could be extracted and reutilized. One possible way to extract metals from the waste products is to use electrochemical methods. In order to implement these techniques on an industrial scale, there are several parameters that have to be considered. One important parameter is the choice of material of the electrode, which needs to have a large surface area, a high chemical inertness and electrical conductivity, and preferably also a reasonable price. A material that fulfills these qualifications is reticulated vitreous carbon (RVC), and therefore the extraction efficiency of this porous material has been evaluated in this thesis. Studies were also performed to evaluate how several other parameters affected the extraction efficiency, since this does not rely on the choice of electrode material alone. The results showed that RVC is suitable as electrode material for efficient metal extraction from fly ash. The most efficient electrode combination was RVC with a pore size of 10 pores per linear inch as working electrode, stainless steel as counter electrode, and Ag/AgCl as reference electrode. Both the amperometric and galvanostatic experiments extracted equal amounts of copper within the same time interval, which means that the choice of using either controlled potential or controlled current for an efficient extraction of copper was not of significant importance. The mass transfer rate for copper was 0.12 mg·h-1·cm-2 in both methods, where an electrolyte of 200 ml was used with an initial copper concentration of 50 mg/l. Regarding stirring of the electrolyte, circulation in the solution is an advantage, but not critical for an efficient reduction. The extraction efficiency for one particular metal did not seem to be affected by the presence of other metals in the electrolyte. It was also shown that a selective extraction of metals was possible by applying different potentials. Lastly, an experiment with fly ash was performed, with the optimal conditions and electrode combination based on the previous experiments. This yielded a mass transfer rate of 0.59 mg·h-1·cm-2 for zinc using an electrolyte of 200 ml, which initially contained 595 mg/l of zinc.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-64361 |
Date | January 2010 |
Creators | Norman, Sofia |
Publisher | Linköpings universitet, Institutionen för fysik, kemi och biologi |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/masterThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds