The design, simulation, and initial fabrication of a novel ultra-compact 2x2 silicon multimode-interference device evanescently coupled to a dual germanium metal-semiconductor-metal (MSM) photodetector is presented. For operation at the standard telecom wavelength of 1.5 µm, the simulations demonstrate high-speed operation at 30 GHz, low dark current in the nanoamp range, and external quantum efficiency of 80%. Error analysis was performed for possible tilt error introduced by hybrid integration of the MSM layer on top of the MMI waveguides by use of surface mount technology (SMT) and direct wafer bonding.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/613424 |
Date | January 2016 |
Creators | Meyer, Jason T. |
Contributors | Fallahi, Mahmoud, Norwood, Robert A., Pau, Stanley |
Publisher | The University of Arizona. |
Source Sets | University of Arizona |
Language | en_US |
Detected Language | English |
Type | text, Electronic Thesis |
Rights | Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. |
Page generated in 0.0081 seconds