Return to search

Applications of DABSO for the delivery of sulfur dioxide in organic synthesis

This thesis documents the development of novel synthetic methodologies for the incorporation of sulfur dioxide into organic molecules employing the amine-sulfur dioxide complex DABSO (vide infra). These developed processes serve to access a range of sulfonyl-containing (-SO<sub>2</sub>-) compounds including sulfones and sulfonamides, via sulfinic acid precursors. <b>Chapter 1</b> provides an overview of the synthesis and applications of sulfonyl-containing compounds and the organic chemistry of sulfur dioxide. A comprehensive introduction to the developed uses of sulfur dioxide surrogates in organic chemistry is given. The synthetic utility of metal sulfinates towards accessing sulfonyl-containing compounds is also discussed. <b>Chapter 2</b> details the development of a one-pot sulfone synthesis via metal sulfinates generated from organometallic reagents and DABSO. Alkyl, alkenyl and (hetero)aryl sulfinates prepared from organolithium and Grignard reagents can be efficiently coupled with a range of electrophiles to access a range of products including diaryl, aryl-heteroaryl and &beta;-hydroxy sulfones. <b>Chapter 3</b> describes an array-compatible, one-pot sulfonamide synthesis employing metal sulfinates and N-chloroamines as in situ-generated intermediates. This employs DABSO and sodium hypochlorite (bleach) as simple reagents and organolithium, organozinc and Grignard reagents along with amines as readily-accessible building blocks. The robust nature of this methodology and its potential application in discovery chemistry is demonstrated with a 65-compound array synthesis. <b>Chapter 4</b> documents the development of a palladium-catalysed sulfination reaction of boronic acids to access a range of sulfonyl-containing compounds. This involved the establishment of a one-pot/one step synthesis of sulfones leading to the discovery of a redox-neutral, ligand-free sulfination procedure using DABSO and palladium(II) catalysis. Sulfinic acid derivatives can be generated and subsequently trapped in situ with a variety of electrophiles to furnish sulfones and sulfonamides. <b>Chapter 5</b> summarises the research and the potential future work. <b>Chapter 6</b> provides experimental details and data.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:664825
Date January 2015
CreatorsDeeming, Alex
ContributorsWillis, Michael
PublisherUniversity of Oxford
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://ora.ox.ac.uk/objects/uuid:ae0a6c5c-57a1-48bc-b219-ad22678d51ca

Page generated in 0.0022 seconds