Cette étude a pour but de développer de nouveaux matériaux composites à matrice métallique renforcés par des nanotubes de carbone (CNT) et présentant des propriétés mécaniques améliorées. La majeure partie de ce travail a été réalisée en utilisant des CNT multi-feuillets synthétisés par déposition chimique en phase vapeur en tant que renforts et un alliage d'aluminium AA5083 comme matrice. Des composites CNT/AA5083 denses et homogènes ont été élaborés par le procédé de métallurgie des poudres suivi par une étape de mise en forme, l'extrusion. L'homogénéité de la dispersion des CNT à l'échelle microscopique dans les composites s'avère être un paramètre clé pour l'amélioration des propriétés mécaniques. Ceci a été réalisé par broyage planétaire à haute énergie impliquant des mécanismes de déformation plastique et de soudure à froid et a été démontré à l'aide d'études cartographiques par spectroscopie Raman. La limite d'élasticité, la résistance à la traction et la micro-dureté des composites homogènes ont été augmentées jusqu'à respectivement 55%, 61% et 33% en comparaison avec l'alliage sans CNT et préparé dans les mêmes conditions. Le coefficient de dilatation thermique a été quant à lui réduit de 10%. Les propriétés optimales ont été obtenues pour des concentrations en CNT de 1,5 % en masse. Le renforcement du matériau a été principalement attribué au transfert de charge à l'interface CNT/matrice. / The overall goal of this thesis is to process new metal matrix composites reinforced by CNT with enhanced mechanical properties. The main part of this work was achieved using CVD-grown multi-walled CNT as reinforcement and a high-performance light aluminium alloy, AA5083, as the matrix. Dense and homogeneous CNT/AA5083 composites were processed by the powder metallurgy route, followed by an extrusion forming process. A homogeneous dispersion of the CNT in the composites at the micron scale appears to be a key parameter for improving the mechanical properties. This could be achieved using high energy ball milling through the mechanisms of plastic deformation and cold-welding, and was demonstrated from Raman spectroscopy cartography studies. Yield strength, ultimate tensile strength and micro-hardness of the homogeneous composites were increased by up to 55%, 61% and 33%, with respect to raw alloys processed in the same conditions, and the coefficient of thermal expansion was decreased by 10%. Optimal results were obtained with a CNT con-tent of 1.5 wt.-%. The material strengthening was principally attributed to load transfer at the CNT/matrix interface.
Identifer | oai:union.ndltd.org:theses.fr/2012MON20002 |
Date | 14 February 2012 |
Creators | Stein, Julien |
Contributors | Montpellier 2, Anglaret, Eric, Fréty, Nicole |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.002 seconds