Metal organic frameworks (MOFs) are a class of nanoporous materials composed through self-assembly of inorganic and organic structural building units (SBUs). MOFs show great promise for many applications due to their record-breaking internal surface areas and tunable pore chemistry. This thesis work focuses on gas separation applications of MOFs in the context of carbon capture and storage (CCS) technologies. CCS technologies are expected to play a key role in the mitigation of anthropogenic CO2 emissions in the near future. In the first part of the thesis, robust machine learning quantitative structure-property relationship (QSPR) models are developed to predict CO2 working capacity and CO2/H2 selectivity for pre-combustion carbon capture using the most topologically diverse database of hypothetical MOF structures constructed to date (358,400 MOFs, 1166 network topologies). The support vector regression (SVR) models are developed on a training set of 35,840 MOFs (10% of the database) and validated on the remaining 322,560 MOFs. The most accurate models for CO2 working capacities (R2 = 0.944) and CO2/H2 selectivities (R2 = 0.876) are built from a combination of six geometric descriptors and three novel y-range normalized atomic-property-weighted radial distribution function (AP-RDF) descriptors. 309 common MOFs are identified between the grand canonical Monte Carlo (GCMC) calculated and SVR-predicted top-1000 high-performing MOFs ranked according to a normalized adsorbent performance score. This work shows that SVR models can indeed account for the topological diversity exhibited by MOFs.
In the second project of this thesis, computational simulations are performed on a MOF, CALF-20, to examine its chemical and physical properties which are linked to its exceptional water-resisting ability. We predict the atomic positions in the crystal structure of the bulk phase of CALF-20, for which only a powder X-ray diffraction pattern is available, from a single crystal X-ray diffraction pattern of a metastable phase of CALF-20. Using the predicted CALF-20 structure, we simulate adsorption isotherms of CO2 and N2 under dry and humid conditions which are in excellent agreement with experiment. Snapshots of the CALF-20 undergoing water sorption simulations reveal that water molecules in a given pore adsorb and desorb together due to hydrogen bonding. Binding sites and binding energies of CO2 and water in CALF-20 show that the preferential CO2 uptake at low relative humidities is driven by the stronger binding energy of CO2 in the MOF, and the sharp increase in water uptake at higher relative humidities is driven by the strong intermolecular interactions between water.
In the third project of this thesis, we use computational simulations to investigate the effects of residual solvent on Ni-BPM’s CH4 and N2 adsorption properties. Single crystal X-ray diffraction data shows that there are two sets of positions (Set 1 and 2) that can be occupied by the 10 residual DMSO molecules in the Ni-BPM framework. GCMC simulations of CH4 and N2 uptake in Ni-BPM reveal that CH4 uptake is in closest agreement with experiment when the 10 DMSO’s are placed among the two sets of positions in equal ratio (Mixed Set). Severe under-prediction and over-prediction of CH4 uptake are observed when the DMSO’s are placed in Set1 and Set 2 positions, respectively. Through binding site analysis, the CH4 binding sites within the Ni-BPM framework are found to overlap with the Set 1 DMSO positions but not with the Set 2 DMSO positions which explains the deviations in CH4 uptake observed for these cases. Binding energy calculations reveal that CH4 molecules are most stabilized when the DMSO’s are in the Mixed Set of positions.
Identifer | oai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/37288 |
Date | January 2018 |
Creators | Dureckova, Hana |
Contributors | Woo, Tom |
Publisher | Université d'Ottawa / University of Ottawa |
Source Sets | Université d’Ottawa |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0024 seconds