Return to search

Study of organic semiconductor / ferromagnet interfaces by spin-polarized electron scattering and photoemission

I studied organic semiconductor/ferromagnet interfaces by characterizing them by spin-polarized electron scattering and photoemission spectroscopy experiments. In the first part, a completely unexpected behaviour of the spin-dependent electron reflection properties of these interfaces is observed. In fact, sub-monolayer coverage of the organic molecules makes the electron reflection amplitude independent of the spin, i.e. both the reflectivity and the reflection phase become independent of the spin orientation of the incident electrons. Although I am not able at the moment to identify the cause of this phenomenon, I show that it is a very general phenomenon which is independent of the energy of the primary electrons, the choice of the ferromagnetic substrate, the choice of the organic molecule, and of the orientation of the initial spin polarization. It is not due to a change of the surface magnetization, a depolarization of the primary electrons, or a direct interaction of the molecules with the ferromagnetic substrate. Moreover, theory does not predict so far the experimental results and further research is required to unveil the physics behind these observations. In the second part of my thesis, spin-resolved photoemission experiments have been performed at the synchrotron SOLEIL. The main result is the observation of a highly spin-polarized molecule-induced electronic state close to the Fermi level. Measurements as a function of the organic layer thickness allow us to determine the interfacial character of this electronic state. Finally, these results are compared with theoretical calculations performed at the institute.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-01062352
Date26 November 2013
CreatorsDjeghloul, Fatima Zohra
PublisherUniversité de Strasbourg
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageEnglish
TypePhD thesis

Page generated in 0.0022 seconds