Dentre as aplicações mais comuns envolvendo microarrays, pode-se destacar a classificação de amostras de tecido, essencial para a identificação correta da ocorrência de câncer. Essa classificação é realizada com a ajuda de algoritmos de Aprendizagem de Máquina. A escolha do algoritmo mais adequado para um dado problema não é trivial. Nesta tese de doutorado, estudou-se a utilização de meta-aprendizagem como uma solução viável. Os resultados experimentais atestaram o sucesso da aplicação utilizando um arcabouço padrão para caracterização dos dados e para a construção da recomendação. A partir de então, buscou-se realizar melhorias nesses dois aspectos. Inicialmente, foi proposto um novo conjunto de meta-atributos baseado em índices de validação de agrupamentos. Em seguida, estendeu-se o método de construção de rankings kNN para ponderar a influência dos vizinhos mais próximos. No contexto de meta-regressão, introduziu-se o uso de SVMs para estimar o desempenho de algoritmos de classificação. Árvores de decisão também foram empregadas para a construção da recomendação de algoritmos. Ante seu desempenho inferior, empregou-se um esquema de comitês de árvores, que melhorou sobremaneira a qualidade dos resultados / Among the most common applications involving microarray, one can highlight the classification of tissue samples, which is essential for the correct identification of the occurrence of cancer and its type. This classification takes place with the aid of machine learning algorithms. Choosing the best algorithm for a given problem is not trivial. In this thesis, we studied the use of meta-learning as a viable solution. The experimental results confirmed the success of the application using a standard framework for characterizing data and constructing the recommendation. Thereafter, some improvements were made in these two aspects. Initially, a new set of meta-attributes was proposed, which are based on cluster validation indices. Then the kNN method for ranking construction was extended to weight the influence of nearest neighbors. In the context of meta-regression, the use of SVMs was introduced to estimate the performance of ranking algorithms. Decision trees were also employed for recommending algorithms. Due to their low performance, a ensemble of trees was employed, which greatly improved the quality of results
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-04012011-142551 |
Date | 26 October 2010 |
Creators | Bruno Feres de Souza |
Contributors | André Carlos Ponce de Leon Ferreira de Carvalho, Carlos Manuel Milheiro de Oliveira Pinto Soares, Ricardo Bastos Cavalcante Prudêncio, Ivan Nunes da Silva, Carlos Manuel Milheiro de Oliveira Pinto Soares, Fernando José von Zuben |
Publisher | Universidade de São Paulo, Ciências da Computação e Matemática Computacional, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0015 seconds