Today, the main raw material for vanadium production is vanadium containing steelmaking slags. The yield of the vanadium extraction process is affected by the composition of the slag, which in turn determines the phases present, the fractions of the phases and the distribution of the elements between the phases. The aim of this thesis was to experimentally investigate the effect of Al2O3, CaO and SiO2 on the phase relations in vanadium containing slags at 1673 K. Synthetic slags, in which the contents of Al2O3, CaO and SiO2 were varied individually, were equilibrated at 1673 K in a vertical resistance furnace. Closed molybdenum crucibles were used to set the oxygen potential of the individual samples. The phases present, the phase compositions and the phase fractions of the samples were studied using SEM-EDS and LOM combined with an image analysis software. The results indicate that the samples consisted of a mixture of a vanadium and iron rich spinel phase and an iron and silicon rich liquid phase at 1673 K. Practically all the vanadium was concentrated into the spinel phase while no free silica or solid phases into which both calcium and vanadium concentrate to a significant extent were observed. The effect of Al2O3 on the phase compositions and the phase fractions was seen to be limited in the range studied. CaO primarily affected the composition of the liquid phases, while the effect on the phase fractions was small. SiO2 affected both the composition and fraction of the phases. The main effect was a decreased fraction of spinel phase, with an increasing vanadium content in the spinel phase as consequence.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-176079 |
Date | January 2015 |
Creators | Berg, Martin |
Publisher | KTH, Materialvetenskap |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0021 seconds