Return to search

The composition and interactions of catalytic surfaces in working environments

In order to clarify the role that water plays in the photocatalytic process, changes in the IR and Raman spectra of P25 TiO₂ thin films were observed upon exposure to liquid water. Further investigation of these spectral changes via dehydration of thin films under nitrogen and oxygen of different humidities led to the observation of spectroscopic features that have been assigned to localised surface phonon modes. When the effect of UV irradiation on these features was investigated, a broad IR absorption due to transitions of electrons in shallow traps was detected under dry nitrogen but not under dry oxygen.
Further investigation of the photocatalytic properties of P25 TiO₂ showed a complete removal of a stearic acid film. The final products have been tentatively assigned to a mixture of short chain carbonyl species and adsorbed carbonates as well as carbon dioxide and water.
The IR spectrum of the fuel cell membrane material Nafion is complex and literature data varies in some of the assignments. The compound perfluoro(2-ethoxyethane)sulfonic acid was used as a model compound for the Nafion side chain resulting in a clearer assignment of the Nafion IR spectrum. In light of these new assignments changes induced in the region 1100-1300 cm⁻� by variation in humidity and ion exchange have been shown to be mainly the result of changes in the sulfonate asymmetric stretching modes.
By flowing a series of solutions containing tetramethylammonium ions and perchlorate ions the surface charge characteristics of a Pt black film were determined in the pH range 2-12. There proved to be a weak positive charge below pH 4 and a weak negative charge above pH 9. Between these points there appeared to be no overall charge on the surface.
When perfluoro(2-ethoxyethane)sulfonic acid was adsorbed to a Pt black film changes in its IR spectrum indicated a strong binding via interactions between the sulfonate groups and the Pt surface. The nature of the adsorption of Nafion was less clear cut and, whilst adsorption is strong, it seems possible that hydrophobic interactions between the Nafion backbone and the surface are involved.

Identiferoai:union.ndltd.org:ADTP/217487
Date January 2007
CreatorsWarren, David Stephen, n/a
PublisherUniversity of Otago. Department of Chemistry
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightshttp://policy01.otago.ac.nz/policies/FMPro?-db=policies.fm&-format=viewpolicy.html&-lay=viewpolicy&-sortfield=Title&Type=Academic&-recid=33025&-find), Copyright David Stephen Warren

Page generated in 0.0022 seconds