The present work attempts to determine the feasibility of the accelerometer as an end-point control sensor for the basic oxygen steelmaking process. In this study, two series of laboratory scale BOF simulations were performed. In the first series, the accelerometer was sampled at low frequency to obtain an amplitude-time relation that can be related to the rate of decarburization during the oxygen blow. In contrast, the accelerometer was sampled at high frequency in the second series in order to discern the presence of specific vibrational frequencies that can be related to the process. As a final aspect of the research work, several high frequency simulations were terminated prematurely in an attempt to elucidate the carbon content of the bath at the point in time when the accelerometer can clearly detect the final change in the rate of decarburization.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.59847 |
Date | January 1990 |
Creators | O'Leary, Kevin E. |
Publisher | McGill University |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Format | application/pdf |
Coverage | Master of Engineering (Department of Mining and Metallurgical Engineering.) |
Rights | All items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated. |
Relation | alephsysno: 001171011, proquestno: AAIMM66474, Theses scanned by UMI/ProQuest. |
Page generated in 0.0019 seconds