A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of requirements for the degree of Master of Science. Johannesburg, October 2016. / The adsorption of molecules on a metal surface is core in heterogeneous catalysis. Surface sensitive techniques such as low energy electron diffraction (LEED), X-ray photoelectron spectroscopy (XPS) and temperature programmed desorption (TPD) are key tools to study adsorption geometries and structures of molecules and atoms on a metal surface. As our first model system we investigated the dissociation of NO on Ir{100}. The LEED experimental results showed a p(2 X 2) diffraction pattern at 300 K using. In this study two options were explored: phase mixing where dissociated nitrogen and oxygen are on the same unit cell, as well as phase separation where both nitrogen and oxygen form their own separate unit cell which results in a p(2 x 2) unit cell.
Calculations were done on atop, bridge and hollow sites, with only perpendicular parameters and vibrational amplitude being varied initially. Results for phase mixing calculations gave the lowest R-factor of 0.70 ± 0.11 for atop site. We further considered phase separation for hollow and bridge sites for nitrogen and oxygen respectively because these two sites were found to be the most stable sites using DFT from previous studies.
The lowest R-factors were 0.37 ± 0.06 for nitrogen c(2x2) and 0.24 ± 0.13 for oxygen p(2 X 1) For oxygen significant row pairing of iridium atoms stabilized the structure as mentioned in previous studies. Therefore from our results it is evident that phase separation models the experimental data better than phase mixing. Nitrogen and oxygen form c(2 X 2) and p(2 X 1) overlayer structures respectively which in combination result in a p(2 X 2) pattern that is in agreement with experimental results.
The second system involves enantio-selectivity and chiral resolution at the organic-inorganic interfaces. The d-serine molecule was adsorbed on the Cu{110} surface. Density functional theory (DFT) calculations were used as a benchmark for our CLEED calculations. LEED experiments showed a (- 1 + 2: 40) overlayer pattern for d-serine adsorbed on Cu{110} surface. Three structures from DFT calculations with the lowest energy were used for CLEED calculations.
These structures differed by the way they bond to the surface and molecular interactions. Calculations were carried out on these three structures and the structure with intra-dimer bonding was the best structure. The searches for this structure were further optimized by introducing pairing of the atoms in the row reconstruction on the copper surface and angle search. The lowest value obtained was 0.37 ± 0.09, which suggests that further understanding of this system is needed.
The ultra-high vacuum (UHV) chamber was fully commissioned and is now ready for TPD and XPS studies. / LG2017
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:wits/oai:wiredspace.wits.ac.za:10539/21752 |
Date | January 2016 |
Creators | Mohotlhoane, Sifiso Alec |
Source Sets | South African National ETD Portal |
Language | English |
Detected Language | English |
Type | Thesis |
Format | Online resource (111 leaves), application/pdf |
Page generated in 0.0024 seconds