by So Lai Man, Rachel. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (leaves 83-103). / Abstracts in English and Chinese. / Acknowledgements --- p.i / Abstract --- p.ii / Table of Contents --- p.iv / List of Figures --- p.viii / List of Tables --- p.ix / Chapter 1. --- Literature Review --- p.1 / Chapter 1.1 --- Introduction --- p.1 / Chapter 1.2 --- Overview of metal ions pollution --- p.2 / Chapter 1.3 --- Treatment of metal ions in wastewater --- p.4 / Chapter 1.3.1 --- Conventional methods --- p.4 / Chapter 1.3.2 --- Microbial methods --- p.5 / Chapter 1.4 --- Phytoremediation --- p.6 / Chapter 1.4.1 --- Rhizofiltration --- p.10 / Chapter 1.4.2 --- Mechanisms of metal ion removal by plant root --- p.12 / Chapter 1.5 --- Using water hyacinth for wastewater treatment --- p.15 / Chapter 1.5.1 --- Biology of water hyacinth --- p.15 / Chapter 1.5.2 --- Water hyacinth based systems for wastewater treatment --- p.21 / Chapter 1.6 --- Biology of rhizosphere --- p.23 / Chapter 2. --- Objectives --- p.26 / Chapter 3 --- Materials and Methods --- p.28 / Chapter 3.1 --- Metal ion stock solution --- p.28 / Chapter 3.2 --- Plant material and growth conditions --- p.28 / Chapter 3.2.1 --- Preparation of Hoagland solution --- p.28 / Chapter 3.3 --- Metal ion resistance of water hyacinth --- p.31 / Chapter 3.4 --- Effect of metal ion concentration on the bacteria population --- p.31 / Chapter 3.4.1 --- Minimal medium (MM) --- p.31 / Chapter 3.5 --- Isolation of rhizospheric metal ion-resistant bacteria --- p.34 / Chapter 3.6 --- Metal ion removal capacity of isolated bacteria --- p.34 / Chapter 3.7 --- Colonization efficiency of a metal ion-adsorbing bacterium onto the root --- p.35 / Chapter 3.7.1 --- Suppression of the bacterial population in the rhizosphere by an antibiotic --- p.35 / Chapter 3.7.2 --- Colonization efficiency --- p.36 / Chapter 3.8 --- Effect of colonizing the metal ion-adsorbing bacteria on the metal ion removal capacity of roots --- p.37 / Chapter 4. --- Results --- p.38 / Chapter 4.1 --- Selection of optimum metal ion concentration for water hyacinth and rhizo spheric bacteria --- p.38 / Chapter 4.1.1 --- Metal ion resistance of water hyacinth --- p.38 / Chapter 4.1.2 --- Effect of metal ion concentration on population of rhizospheric bacteria --- p.43 / Chapter 4.1.3 --- Selection for optimum metal ion concentration for water hyacinth and rhizospheric bacteria --- p.43 / Chapter 4.2 --- Screening for bacterial strain with high metal ion resistance and removal capacity --- p.46 / Chapter 4.2.1 --- Enrichment of the metal ion-resistant bacteria in the rhizosphere --- p.46 / Chapter 4.2.2 --- Isolation of the natural bacterial population in rhizosphere --- p.50 / Chapter 4.2.3 --- Determination of the metal ion removal capacity of rhizospheric metal ion-resistant bacterial strains --- p.52 / Chapter 4.2.4 --- "Comparison of Cu2+, Ni2+ and Zn2+ removal capacities of Cu2+-resistant bacterial strains" --- p.53 / Chapter 4.3 --- Effect of inoculating Cu2+-resistant bacterial strain to the rhizosphere on the metal ion removal capacity of the root --- p.59 / Chapter 4.3.1 --- Bactericidal efficiency of oxytetracycline --- p.59 / Chapter 4.3.2 --- Effect of inoculating Cu2+-adsorbing bacterial cells into the rhizosphere --- p.62 / Chapter 4.3.3 --- Effect of bacterial cell density of inoculum on colonizing efficiency --- p.63 / Chapter 4.3.4 --- Colonizing efficiency and metal ion removal capacity of root by direct inoculation of metal ion-adsorbing bacterial cells into metal ion solution or pre-inoculation in Hoagland solution --- p.64 / Chapter 4.3.5 --- Effect of inoculating Strain FC-2-2 into the rhizosphere on the removal capacity of roots --- p.64 / Chapter 5. --- Discussion --- p.69 / Chapter 5.1 --- Selection of optimum metal ion concentration for water hyacinth and rhizospheric bacteria --- p.69 / Chapter 5.1.1 --- Metal resistance of water hyacinth --- p.69 / Chapter 5.1.2 --- Effect of metal ion concentration on population of rhizospheric bacteria population --- p.70 / Chapter 5.1.3 --- Selection for optimum concentration --- p.70 / Chapter 5.2 --- Screening for high metal ion-resistant and -removal bacterial strains --- p.71 / Chapter 5.2.1 --- Enrichment of the metal ion-resistant bacteria in the rhizosphere --- p.71 / Chapter 5.2.2 --- Select metal ion-resistant bacterial strain from the natural population in the rhizosphere --- p.72 / Chapter 5.2.3 --- Determination of the metal ion removal capacity of respective metal ion-resistant bacterial strain --- p.72 / Chapter 5.3 --- Effect of inoculating Cu2+-resistant bacterial strain in the rhizosphere on the metal ion removal capacity of the root --- p.74 / Chapter 5.3.1 --- Bactericidal efficiency of oxytetracycline --- p.74 / Chapter 5.3.2 --- Effect of inoculating Cu2十-adsorbing bacterial cells into the rhizosphere --- p.75 / Chapter 5.3.3 --- Effect inoculum cell density on the colonizing efficiency --- p.76 / Chapter 5.3.4 --- Comparison of colonizing efficiency and metal ion removal capacity of root by direct inoculation metal ion-adsorbing bacterial cells into metal solution or pre-inoculationin Hoagland solution --- p.77 / Chapter 5.3.5 --- Effect of inoculating strain FC-2-2 into the rhizosphere on the removal capacity of roots --- p.78 / Chapter 5.4 --- Limitation and future development --- p.79 / Chapter 6. --- Conclusion --- p.81 / Chapter 7. --- References --- p.83
Identifer | oai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_323433 |
Date | January 2001 |
Contributors | So, Lai Man., Chinese University of Hong Kong Graduate School. Division of Biology. |
Source Sets | The Chinese University of Hong Kong |
Language | English, Chinese |
Detected Language | English |
Type | Text, bibliography |
Format | print, xi, 103 leaves : ill. (some col.) ; 30 cm. |
Rights | Use of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/) |
Page generated in 0.0026 seconds