Return to search

Improvement of removal and recovery of copper ion (Cu²⁺) from electroplating effluent by magnetite-immobilized bacterial cells with calcium hydroxide precipitation =: 利用綜合化學生物磁力系統去除及回收電鍍廢水中的銅離子. / 利用綜合化學生物磁力系統去除及回收電鍍廢水中的銅離子 / Improvement of removal and recovery of copper ion (Cu²⁺) from electroplating effluent by magnetite-immobilized bacterial cells with calcium hydroxide precipitation =: Li yong zong he hua xue sheng wu ci li xi tong qu chu ji hui shou dian du fei shui zhong de tong li zi. / Li yong zong he hua xue sheng wu ci li xi tong qu chu ji hui shou dian du fei shui zhong de tong li zi

by Li Ka Ling. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (leaves 221-242). / Text in English; abstracts in English and Chinese. / by Li Ka Ling. / Acknowledgements --- p.i / Abstract --- p.ii / Contents --- p.vi / Chapter 1. --- Introduction --- p.1 / Chapter 1.1 --- Literature review --- p.1 / Chapter 1.1.1 --- Heavy metals in our environment --- p.1 / Chapter 1.1.2 --- Major source of metal pollution in Hong Kong --- p.2 / Chapter 1.1.3 --- Chemistry and toxicity of copper ion --- p.9 / Chapter 1.1.4 --- Removal of metal ions from effluents by precipitation --- p.12 / Chapter 1.1.4.1 --- Metal ions in solution --- p.12 / Chapter 1.1.4.2 --- Precipitation of metal ions --- p.13 / Chapter 1.1.4.3 --- pH adjustment reagents --- p.15 / Chapter 1.1.4.4 --- Precipitation of complexed metal ions --- p.19 / Chapter 1.1.5 --- Other physico-chemical methods for the removal of metal ions --- p.21 / Chapter 1.1.6 --- Removal of metal ions by microorganisms --- p.24 / Chapter 1.1.6.1 --- Biosorption --- p.24 / Chapter 1.1.6.2 --- Other mechanisms for the accumulation of metal ions --- p.28 / Chapter 1.1.6.3 --- An attractive alternative for the removal and recovery of metal ions:biosorption --- p.30 / Chapter 1.1.7 --- Factors affecting biosorption --- p.37 / Chapter 1.1.7.1 --- Culture conditions --- p.38 / Chapter 1.1.7.2 --- pH of solution --- p.39 / Chapter 1.1.7.3 --- Concentration of biosorbent --- p.41 / Chapter 1.1.7.4 --- Initial metal ion concentration --- p.42 / Chapter 1.1.7.5 --- Presence of other cations --- p.43 / Chapter 1.1.7.6 --- Presence of anions --- p.45 / Chapter 1.1.8 --- Properties and uses of magnetite --- p.46 / Chapter 1.1.8.1 --- Physical and chemical properties of magnetite --- p.46 / Chapter 1.1.8.2 --- Use of magnetite for wastewater treatment --- p.48 / Chapter 1.1.8.3 --- Immobilization of cells on magnetite for metal ion removal --- p.49 / Chapter 1.2 --- Objectives of the present study --- p.54 / Chapter 2. --- Materials and methods --- p.57 / Chapter 2.1 --- Effects of physico-chemical factors on the precipitation of Cu2+ --- p.57 / Chapter 2.1.1 --- Reagents and chemicals --- p.57 / Chapter 2.1.2 --- Effects of equilibrium time --- p.59 / Chapter 2.1.3 --- Effects of pH --- p.60 / Chapter 2.1.4 --- Presence of anions and other cations --- p.61 / Chapter 2.1.5 --- "Presence of chelating agent, EDTA" --- p.61 / Chapter 2.2 --- Dissolution of metal sludge --- p.63 / Chapter 2.2.1 --- Dewatering and drying of metal sludge --- p.63 / Chapter 2.2.2 --- Dissolving of metal sludge by sulfuric acid --- p.63 / Chapter 2.3 --- Culture of biomass --- p.65 / Chapter 2.3.1 --- Subculturing of the biomass --- p.65 / Chapter 2.3.2 --- Culture media --- p.66 / Chapter 2.3.3 --- Growth and preparation of the cell suspension --- p.66 / Chapter 2.4 --- Immobilization of the bacterial cells on magnetites --- p.66 / Chapter 2.5 --- Metal ion removal studies --- p.71 / Chapter 2.5.1 --- Preparation of concentrated Cu2+ solutions --- p.71 / Chapter 2.5.2 --- Removal of Cu2+ in the concentrated Cu2+ solutions by magnetite- immobilized cells --- p.74 / Chapter 2.5.3 --- Effects of EDTA --- p.76 / Chapter 2.5.4 --- Effects of anions --- p.77 / Chapter 2.5.5 --- Effects of other cations --- p.78 / Chapter 2.6 --- Maximum removal efficiency of Cu2+ by magnetite-immobilized cells --- p.79 / Chapter 2.7 --- Recovery of adsorbed Cu2+ from magnetite-immobilized cell --- p.79 / Chapter 2.7.1 --- Desorption of Cu2+ from the immobilized cells using sulfuric acid --- p.79 / Chapter 2.7.2 --- Multiple adsorption-desorption cycles --- p.80 / Chapter 2.8 --- Treatment of electroplating effluent by magnetite-immobilized cells --- p.80 / Chapter 2.8.1 --- Removal and recovery of Cu2+ from electroplating effluent collected from rinsing baths --- p.80 / Chapter 2.8.2 --- Removal and recovery of Cu2+ from electroplating effluent collected from final collecting tank --- p.83 / Chapter 2.9 --- Data analysis --- p.84 / Chapter 3. --- Results --- p.86 / Chapter 3.1 --- Effects of physical-chemical factors on the precipitation of Cu2+ --- p.86 / Chapter 3.1.1 --- Effects of equilibrium time --- p.86 / Chapter 3.1.2 --- Effects of pH --- p.86 / Chapter 3.1.3 --- Presence of anions --- p.89 / Chapter 3.1.3.1 --- Cu2+-S042- systems --- p.89 / Chapter 3.1.3.2 --- Cu2+-Cl- systems --- p.89 / Chapter 3.1.3.3 --- Cu2+-Cr2072- systems --- p.89 / Chapter 3.1.3.4 --- Cu2+-mixed anions systems --- p.93 / Chapter 3.1.4 --- Presence of other cations --- p.93 / Chapter 3.1.4.1 --- Cu2+-Ni2+ systems --- p.93 / Chapter 3.1.4.2 --- Cu2+-Zn2+ systems --- p.96 / Chapter 3.1.4.3 --- Cu2+-Cr6+ systems --- p.96 / Chapter 3.1.4.4 --- Cu2+-mixed cations systems --- p.99 / Chapter 3.1.5 --- "Presence of chelating agent, EDTA" --- p.99 / Chapter 3.1.5.1 --- Cu2+-EDTA4 -mixed anions systems --- p.102 / Chapter 3.1.5.2 --- Cu2+-EDTA4--mixed cations systems --- p.102 / Chapter 3.2 --- Dissolution of metal sludge --- p.105 / Chapter 3.2.1 --- Dewatering and drying of metal sludge --- p.105 / Chapter 3.2.2 --- Dissolving of metal sludge by sulfuric acid --- p.105 / Chapter 3.3 --- Removal of Cu2+ in the concentrated Cu2+ solution by magnetite- immobilized cells --- p.109 / Chapter 3.4 --- Effects of EDTA on removal and recovery of Cu2+ by magnetite- immobilized cells --- p.109 / Chapter 3.4.1 --- Effects of EDTA --- p.109 / Chapter 3.4.2 --- Effects of EDTA after precipitation --- p.112 / Chapter 3.5 --- Effects of anions on removal and recovery of Cu2+ by magnetite- immobilized cells --- p.120 / Chapter 3.5.1 --- Effects of anions --- p.120 / Chapter 3.5.2 --- Effects of anions after precipitation --- p.120 / Chapter 3.5.3 --- Effects of anions in the presence of EDTA after precipitation --- p.124 / Chapter 3.6 --- Effects of other cations on removal and recovery of Cu2+ by magnetite-immobilized cells --- p.129 / Chapter 3.6.1 --- Effects of other cations --- p.129 / Chapter 3.6.2 --- Effects of other cations after precipitation --- p.137 / Chapter 3.6.3 --- Effects of other cations in the presence of EDTA after precipitation --- p.137 / Chapter 3.7 --- Maximum removal efficiency of Cu2+ by magnetite-immobilized cells --- p.142 / Chapter 3.8 --- Multiple adsorption-desorption cycle --- p.148 / Chapter 3.9 --- Treatment of electroplating effluent by magnetite-immobilized cells --- p.148 / Chapter 3.9.1 --- Removal and recovery of Cu2+ from electroplating effluent collected from rinsing baths --- p.148 / Chapter 3.9.2 --- Removal and recovery of Cu2+ from electroplating effluent collected from final collecting tank --- p.158 / Chapter 4. --- Discussion --- p.167 / Chapter 4.1 --- Effects of physical-chemical factors on the precipitation of Cu2+ --- p.167 / Chapter 4.1.1 --- Effects of equilibrium time --- p.167 / Chapter 4.1.2 --- Effects of pH --- p.168 / Chapter 4.1.3 --- Presence of anions --- p.169 / Chapter 4.1.4 --- Presence of other cations --- p.170 / Chapter 4.1.5 --- "Presence of chelating agent, EDTA" --- p.171 / Chapter 4.1.5.1 --- Presence of EDTA with anions --- p.174 / Chapter 4.1.5.2 --- Presence of EDTA with other cations --- p.174 / Chapter 4.2 --- Dissolution of metal sludge --- p.175 / Chapter 4.2.1 --- Dewatering and drying of metal sludge --- p.175 / Chapter 4.2.2 --- Dissolving of metal sludge by sulfuric acid --- p.175 / Chapter 4.3 --- Metal ion removal studies --- p.176 / Chapter 4.3.1 --- Selection of biomass --- p.176 / Chapter 4.3.2 --- Removal of Cu2+ in the concentrated Cu2+ solution by magnetite- immobilized cells --- p.178 / Chapter 4.4 --- Effects of EDTA on removal and recovery of Cu2+ by magnetite- immobilized cells --- p.182 / Chapter 4.4.1 --- Effects of EDTA --- p.182 / Chapter 4.4.2 --- Effects of EDTA after precipitation --- p.184 / Chapter 4.5 --- Effects of anions on removal and recovery of Cu2+ by magnetite- immobilized cells --- p.185 / Chapter 4.5.1 --- Effects of anions --- p.185 / Chapter 4.5.2 --- Effects of anions after precipitation --- p.188 / Chapter 4.5.3 --- Effects of anions in the presence of EDTA after precipitation --- p.190 / Chapter 4.6 --- Effects of other cations on removal and recovery of Cu2+ by magnetite-immobilized cells --- p.192 / Chapter 4.6.1 --- Effects of other cations --- p.192 / Chapter 4.6.2 --- Effects of other cations after precipitation --- p.195 / Chapter 4.6.3 --- Effects of other cations in the presence of EDTA after precipitation --- p.197 / Chapter 4.7 --- Maximum removal efficiency of Cu2+ by magnetite-immobilized cells --- p.198 / Chapter 4.8 --- Multiple adsorption-desorption cycles --- p.199 / Chapter 4.9 --- Treatment of electroplating effluent by magnetite-immobilized cells --- p.202 / Chapter 4.9.1 --- Removal and recovery of Cu2+ from electroplating effluent collected from rinsing baths --- p.202 / Chapter 4.9.2 --- Removal and recovery of Cu2+ from electroplating effluent collected from final collecting tank --- p.205 / Chapter 5. --- Conclusion --- p.213 / Chapter 6. --- Summary --- p.215 / Chapter 7. --- Recommendations --- p.219 / Chapter 8. --- References --- p.221

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_323417
Date January 2001
ContributorsLi, Ka Ling., Chinese University of Hong Kong Graduate School. Division of Environmental Science.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, xxii, 242 leaves : ill. ; 30 cm.
CoverageChina, Hong Kong
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0029 seconds