Return to search

HYBRID PARALLELIZATION OF THE NASA GEMINI ELECTROMAGNETIC MODELING TOOL

Understanding, predicting, and controlling electromagnetic field interactions on and between complex RF platforms requires high fidelity computational electromagnetic (CEM) simulation. The primary CEM tool within NASA is GEMINI, an integral equation based method-of-moments (MoM) code for frequency domain electromagnetic modeling. However, GEMINI is currently limited in the size and complexity of problems that can be effectively handled. To extend GEMINI’S CEM capabilities beyond those currently available, primary research is devoted to integrating the MFDlib library developed at the University of Kentucky with GEMINI for efficient filling, factorization, and solution of large electromagnetic problems formulated using integral equation methods. A secondary research project involves the hybrid parallelization of GEMINI for the efficient speedup of the impedance matrix filling process. This thesis discusses the research, development, and testing of the secondary research project on the High Performance Computing DLX Linux supercomputer cluster. Initial testing of GEMINI’s existing MPI parallelization establishes the benchmark for speedup and reveals performance issues subsequently solved by the NASA CEM Lab. Implementation of hybrid parallelization incorporates GEMINI’s existing course level MPI parallelization with Open MP fine level parallel threading. Simple and nested Open MP threading are compared. Final testing documents the improvements realized by hybrid parallelization.

Identiferoai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:ece_etds-1104
Date01 January 2017
CreatorsJohnson, Buxton L., Sr.
PublisherUKnowledge
Source SetsUniversity of Kentucky
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations--Electrical and Computer Engineering

Page generated in 0.0019 seconds