La gravitation joue un rôle important dans de nombreux domaines de l'astrophysique : elle assure notamment la cohésion et la stabilité des planètes, des étoiles et des disques. Elle est aussi motrice dans le processus d'effondrement de structure et conduit, dès lors qu'un moment cinétique initial est significatif, à la formation d'un disque.Ma thèse est consacrée à l'étude des disques de gaz, et plus particulièrement à la description du potentiel et du champ de gravité qu'ils génèrent dans l'espace et sur eux-mêmes (l'auto-gravitation). Bien que la force de Newton soit connue depuis longtemps, la détermination des interactions auto-gravitantes reste difficile, en particulier lorsque l'on s'écarte significativement de la sphéricité. La principale difficulté tient dans la divergence hyperbolique du Noyau de Green 1/(r'-r) et nécessite un traitement propre. L'approche théorique est intéressante car elle fournit de nouveaux outils (techniques numériques, formules approchées, etc...) qui peuvent aider à produire des solutions de référence et à améliorer les simulations numériques.Dans une première partie, nous introduisons le sujet, les notions et les bases essentielles. Le chapitre $1$ est consacré à une présentation succinte du contexte scientifique et aux motivations de notre travail. Dans le chapitre $2$, nous reproduisons dans ces grandes lignes le cheminement conduisant au développement multipolaire, à partir de l'équation de Poisson et de la formule intégrale de Newton. Il s'agit de l'une des méthodes les plus classiques permettant d'obtenir le potentiel gravitationnel d'un corps. Les deux systèmes de coordonnées les plus utilisées sont mis en avant : sphériques et cylindriques. A travers quelques exemples, nous montrons les limites de cette approche, en particulier dans le cas de l'auto-gravité des disques.Dans une deuxième partie, nous abordons le vif du sujet. Le chapitre $3$ présente l'approche basée sur les intégrales elliptiques que nous retrouverons dans l'ensemble du manuscrit (cas général d'abord, puis cas axi-symétrique). Dans le chapitre $4$, nous établissons un premier résultat concernant le noyau de Green dans des systèmes axi-symétriques et verticalement homogènes : une forme alternative et régulière du noyau, quelque soit le point de l'espace. Nous avons exploité cette nouvelle formule pour déduire une bonne approximation du potentiel des disques géométriquement minces, des anneaux et des systèmes faiblement étendus en rayon. Ceci fait l'objet du chapitre $5$.Dans une troisième partie, nous étudions les effets de bords sur la composante verticale du champ de gravité, $g_z$, causés par un disque mince axi-symétrique. Le chapitre $6$ est dédié à l'approximation de Paczynski \citep{pacz78}, qui permet traditionnellement d'exprimer le champ comme une fonction linéaire de la densité de surface locale. Cette approximation n'est en fait strictement valide que dans le cas du modèle du "plan infini", loin d'un disque réaliste. Près du bord externe des disques où la gravité décroit, l'approximation de Paczynski s'avère assez imprécise (facteur $2$ typiquement), et ne donne pas de bons résultats et doit être corrigée. Toujours dans l'hypothèse d'une homogénéité verticale de la densité, nous avons construit une expression pour $g_z$ qui tient compte de ces effets de bords. Le chapitre $7$ est consacré à ce résultat.Dans une dernière partie, nous relâchons l'hypothèse de symétrie axiale (le disque est discrétisé en cellules cylindriques homogènes). Nous nous sommes inspirés du travail d'\cite{ansorg03} afin d'exprimer, via le théorème de Green, le potentiel d'une cellule cylindrique homogène par une intégrale de contour. Ce résultat s'applique directement aux simulations de disques, où ceux-ci sont découpés en cellules cylindriques, chacune ayant sa propre densité.Une conclusion et quelques perspectives sont données en fin de manuscrit.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00955555 |
Date | 14 November 2013 |
Creators | Trova, Audrey |
Publisher | Université Sciences et Technologies - Bordeaux I |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0019 seconds