Return to search

Bayesian Parameter Estimation on Three Models of Influenza

Mathematical models of viral infections have been informing virology research for years. Estimating parameter values for these models can lead to understanding of biological values. This has been successful in HIV modeling for the estimation of values such as the lifetime of infected CD8 T-Cells. However, estimating these values is notoriously difficult, especially for highly complex models. We use Bayesian inference and Monte Carlo Markov Chain methods to estimate the underlying densities of the parameters (assumed to be continuous random variables) for three models of influenza. We discuss the advantages and limitations of parameter estimation using these methods. The data and influenza models used for this project are from the lab of Dr. Amber Smith in Memphis, Tennessee. / Master of Science / Mathematical models of viral infections have been informing virology research for years. Estimating parameter values for these models can lead to understanding of biological values. This has been successful in HIV modeling for the estimation of values such as the lifetime of infected CD8 T-Cells. However, estimating these values is notoriously difficult, especially for highly complex models. We use Bayesian inference and Monte Carlo Markov Chain methods to perform parameter estimation for three models of influenza. We discuss the advantages and limitations of these methods. The data and influenza models used for this project are from the lab of Dr. Amber Smith in Memphis, Tennessee.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/77611
Date11 May 2017
CreatorsTorrence, Robert Billington
ContributorsMathematics, Chung, Matthias, Borggaard, Jeffrey T., Smith, Amber Marie, Ciupe, Stanca M.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0019 seconds