Return to search

Explorations with optically active, cage-annulated crown ethers.

A variety of optically active macrocyclic crown ethers that serve as "host" systems that are capable of differentiating between enantiomeric "guest" molecules during host-guest complexation have been prepared via incorporation of chiral elements into the crown ring skeleton. The ability of these crown ethers to recognize the enantiomers of guest salts, i.e., (+) a-methyl benzylamine and to transport them enantioselectively in W-tube transport experiments were studied. The ability of these crown ethers to perform as chiral catalysts in an enantioselective Michael addition was studied. The extent of asymmetric induction, expressed in terms of the enantiomeric excess (%ee), was monitored by measuring the optical rotation of the product and comparing to the literature value.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc4207
Date05 1900
CreatorsJi, Mingzhe
ContributorsMarchand, Alan P., Golden, Teresa D.
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
FormatText
RightsPublic, Copyright, Ji, Mingzhe, Copyright is held by the author, unless otherwise noted. All rights reserved.

Page generated in 0.0018 seconds