Morphine alkaloids and their derivatives are pharmaceutically important substances. Huge production and consumption of these compounds predetermines them to be significant pollutants in the environment. Some of them have been detected in surface waters. The aim of this study was to characterize effects of morphine alkaloids on the physiology of three model organisms: Agrobacterium sp. R89-1, Escherichia coli XL-1 (Blue), and Raoultella sp. kDF8, and elucidation of the mechanisms leading to toxicity. The biotransformation potential and utilization ability were characterized for model organisms. It was demonstrated that the microorganism Agrobacterium sp. R89-1 is capable of rapid biotransformation of codeine to its 14-OH derivatives. The manifestation of morphine compounds toxic effects for the strain R89-1 is the highest. In contrast, microorganism Raoultella sp. KDF8 is able to utilize codeine as a carbon and energy source. The accumulation of 14-OH-derivatives was not observed. Escherichia coli XL-1 (Blue) is not able to biotransform or utilize codeine. Α, β-unsaturated ketones (morphinone, codeinone, 14-OH-morphinone and 14-OH-codeinone) were found as a most toxic intermediates of codeine metabolism. Bacterial cell growth (strains R89-1 and KDF8) in the presence of codeine is characteristic with...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:343093 |
Date | January 2016 |
Creators | Zahradník, Jiří |
Contributors | Kyslík, Pavel, Lichá, Irena |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0022 seconds