The goal of the proposed study is to understand the morphology, physical, and responsive properties of synthetic polymer and biopolymer layer-by-layer (LbL) arrays using the inkjet printing and stamping technique, in order to develop patterned encapsulated thin films for controlled release and biosensor applications. In this study, we propose facile fabrication processes of hydrogen-bonded and electrostatic LbL microscopic dot arrays with encapsulated target organic and cell compounds. We study encapsulation with the controllable release and diffusion properties ofpoly(vinylpyrrolidone) (PVPON), poly(methacrylic acid) (PMAA), silk-polylysine, silk-polyglutamic acid, pure silk films, and E-coli cells from the multi-printing process. Specifically, we investigate the effect of thickness, the number of bilayers, and the hydrophobicity of substrates on the properties of inkjet/stamping multilayer films such as structural stability, responsiveness, encapsulation efficiency, and biosensing properties.
We suggest that a more thorough understanding of the LbL assembly using inkjet printing and stamping techniques can lead to the development of encapsulation technology with no limitations on either the concentration of loading, or the chemical and physical properties of the encapsulated materials. In addition, this study offers new encapsulation concepts with simple, cost effective, highly scalable, living cell-friendly, and controllable patterning properties.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/52300 |
Date | 27 August 2014 |
Creators | Suntivich, Rattanon |
Contributors | Tsukruk, Vladimir V. |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Language | en_US |
Detected Language | English |
Type | Dissertation |
Format | application/pdf |
Page generated in 0.002 seconds