Micro-channels are very important in bio-medical and cooler research. Although many research have been conducted with micro-channels, few results have been contributed to discuss the properties of fluids inside a micro-channel. For example, the thermal distribution of the fluid in a micro-channel is only simulated with numerical analysis approach. In our research, we aim to design a device that can measure real thermal data within a micro-channel. We first applied excimer laser lithography on a PMMA substrate to fabricate a micro-channel with 20 mm length, 200£gm width and 200£gm depth. Micro-heater and micro-thermal sensor is than fabricated by sputtering pt thin-thim with PVD process on a glass substrate. Finally, these devices were assembled with UV-curing and than applied for further testing.
According to our experiment, lift-off process cannot be easily applied to fabricate micro-heater and micro-thermal sensor since the architecture of these devices were fragile in metal line sidewalls. Wet-lithography is than used to conquer this problem. Our primary test on this micro-thermal sensor shows that its resistance varies with thermal changes. Such mechanism can be applied to measuring thermal field in a micro-channel.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0729104-120246 |
Date | 29 July 2004 |
Creators | Huang, Ching-feng |
Contributors | none, Chin-chia Su, Shou-shing Hsieh |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0729104-120246 |
Rights | unrestricted, Copyright information available at source archive |
Page generated in 0.0018 seconds