Return to search

Optimization of a Micro Aerial Vehicle Planform Using Genetic Algorithms

"Micro aerial vehicles (MAV) are small remotely piloted or autonomous aircraft. Wingspans of MAVs can be as small as six inches to allow MAV’s to avoid detection during reconnaissance missions. Improving the aerodynamic efficiency of MAV’s by increasing the lift to drag ratio could lead to increased MAV range and endurance or future decreases in aircraft size. In this project, biologically inspired flight is used as a framework to improve MAV performance since MAV’s operate in a similar flight regime to birds. A novel wind tunnel apparatus was constructed that allows the planform shape of a MAV wing to be easily altered. The scale-model wing mimics a bird wing by using variable feather lengths to vary the wing planform shape. Genetic algorithms that use natural selection as an optimization process were applied to establish successive populations of candidate wing shapes. These wing shapes were tested in the wind tunnel where wings with higher fitness values were allowed to ‘breed’ and create a next generation of wings. After numerous generations were tested an acceptably strong solution was found that yielded a lift to drag ratio of 3.28. This planform was a non conventional planform that further emphasized the ability of a genetic algorithm to find a novel solution to a complex problem. Performance of the best planform was compared to previously published data for conventional MAV planform shapes. Results of this comparison show that while the highest lift to drag ratio found from the genetic algorithm is lower than published data, inabilities of the test wing to accurately represent a flat plate Zimmerman planform and limitations of the test setup can account for these discrepancies."

Identiferoai:union.ndltd.org:wpi.edu/oai:digitalcommons.wpi.edu:etd-theses-1879
Date01 June 2007
CreatorsDay, Andrew Hunter
ContributorsMark W. Richman, Committee Member, David J. Olinger, Advisor, Nikolaos A. Gatsonis, Committee Member, Zhikun Hou, Committee Member
PublisherDigital WPI
Source SetsWorcester Polytechnic Institute
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMasters Theses (All Theses, All Years)

Page generated in 0.0027 seconds