La responsabilité de notre activité dans les récentes et parfois brutales modifications climatiques est avérée. Maîtrise de la demande en énergie et énergies renouvelables apparaissent comme les deux solutions pour remédier à cette catastrophe. Dans ce travail, nous nous intéressons à la cogénération appliquée aux bâtiments résidentiels. Deux zones géographiques sont concernées, l'Afrique de l'Ouest et la France. Il n'existe pas de système de cogénération solaire de très faible puissance (< 10 kWe). La solution envisagée dans ce travail consiste à produire de la chaleur à environ 150 °C et un rendement supérieur à 50 %, de l'utiliser ensuite dans un ORC pour produire électricité et chaleur à basse température. Le système complet doit être résistant et à bas coût. Or pour atteindre ces performances, la concentration solaire est obligatoire. Une partie de ce travail consiste donc au développement d'un panneau à concentration solaire qui répond à ces deux contraintes thermiques, mais aussi au fait d'être robuste, fiable et facilement intégrable à l'enveloppe d'un bâtiment. Dans ce cadre, la technologie cylindro-parabolique a été retenue, adaptée et miniaturisée. En ce qui concerne la partie thermodynamique, le verrou technologique se trouve principalement dans le groupe turboalternateur. L'objet de la seconde partie de cette thèse consiste ainsi à la conception d'un organe de détente également robuste, nécessitant qu'une maintenance simplifiée et réalisable par les équipes de SIREA. La turbine Tesla, brevetée en 1913 par Nikola Tesla, devrait satisfaire à ce cahier des charges. Sa particularité est qu'à l'opposée des autres turbines, son rotor ne possède pas d'aubage, mais seulement des disques parallèles. Son fonctionnement est basé sur l'adhésion du fluide aux surfaces des disques. / The responsibility of our activity in the recent and sometimes brutal climate changes is recognized. Energy demand management and renewable energies appear as two solutions to overcome this disaster. In this work, we focus on combined heat and power applied to residential buildings. Two geographical areas are concerned, West Africa and France. For the moment, no system of very low power (< 10 kWe) solar cogeneration exists. In this work, considered solution consists to produce heat at 150 °C and with an efficiency greater than 50 %, then to use it in an ORC for producing electricity and low temperature heat. The whole system has to be resistant and low-cost. But to reach those performances with solar radiation, concentration is necessary. The first part of this thesis is to elaborate a solar concentrating panel which answer to these two thermal constraints. The new solar panel must be robust, reliable and easily integrable on the building envelope. In this context, parabolic trough is adopted, adapted and miniaturised. Regarding the thermodynamic part, technological lock is found mainly in the turbogenerator. The purpose of the second part of this thesis consists of the design of a an expansion equipement, requiring simplified maintenance and achievable by the team of Sirea. The Tesla turbine, patented in 1913 by Nikola Tesla, should satisfy this specification. Its characteristic is that the opposite other conventional turbines, the rotor is not bladed or vaned, only parallel disks. Fluid exerts shear stress on the disk surfaces resulting in a torque at the shaft.
Identifer | oai:union.ndltd.org:theses.fr/2013INPT0103 |
Date | 08 November 2013 |
Creators | Jourdan, Arnaud |
Contributors | Toulouse, INPT, Bézian, Jean-Jacques, Ladevie, Bruno |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0026 seconds