Return to search

CAPACITANCE METROLOGY OF CURVED SURFACES: STUDY AND CHARACTERIZATION OF A NOVEL PROBE DESIGN

Capacitive sensors are frequently applied to curved target surfaces for precision displacement measurements. In most cases, these sensors have not been recalibrated to take the curvature of the target into consideration. This recalibration becomes more critical as the target surface becomes smaller in comparison to the sensor. Calibration data are presented for a variety of capacitance probe sizes with widely varying geometries. One target surface particularly difficult to characterize is the inner surface of small holes, less than one millimeter in diameter. Although contact probes can successfully measure the inner surface of a hole, these probes are often fragile and require additional sensors to determine when contact occurs. Probes may adhere to the wall of the hole, and only a small number of data points are collected. Direct capacitance measurement of small holes requires a completely new capacitance probe geometry and method of operation. A curved, elongated surface minimizes the gap between the sensor surface and the inner surface of the hole. Reduction in the size of the sensing area is weighed against electronics limitations. The performance of a particular probe geometry is studied using computer simulations to determine the optimal probe design. Multiple, overlapping passes are deconvolved to reveal finer features on the surface of the hole. A prototype sub-millimeter capacitance probe is machined from tungsten carbide, with four additional material layers added using ebeam deposition. Several techniques are studied to remove these layers and create a sensing area along one side of the probe. Both mechanical processes and photolithography are employed.

Identiferoai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:gradschool_diss-1573
Date01 January 2007
CreatorsSmith Jr., Philip T.
PublisherUKnowledge
Source SetsUniversity of Kentucky
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceUniversity of Kentucky Doctoral Dissertations

Page generated in 0.0021 seconds