The convergence of the digital and physical world encourages advances in high-speed telecommunication and fifth generation technology. Two-phase heat transfer systems are common engineering solutions. However, due to the large frequency spectra in 5G, the systematic heat generation increases requiring more efficient thermal management. The surface characteristics of solid materials in these systems is vital making micro-architectured materials a novel pathway to improve heat transfer. The coefficient of thermal expansion and thermal conductivity of the Schoen-Gyroid, a triply periodic minimal surface structure is studied along with a classical cylindrical porous structure. Graphite and graphene are considered as materials with excellent thermal and mechanical properties and are thus the base materials considered in this project. A comprehensive manufacturability study was conducted in order to gain knowledge regarding different graphite/graphene options and it was concluded that commercially available isotropic graphite was the best suited material for the purpose of this project. A decoupled thermo-mechanical analysis of the coefficient of thermal expansion and thermal conductivity of said structures as a function of volume fraction was conducted using computational homogenization with finite element analysis. A linearly elastic constitutive material model in COMSOL Multiphysics was used. As expected, the homogenized effective material is governed by linear constitutive model. Moreover, the results displayed a linear dependency on the porosity for both the CTE and thermal conductivity. The mechanical FEM model was validated using an analytical model derived by Gibson and Ashby and the thermal conductivity FEM model was validated using experimental data.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-479165 |
Date | January 2022 |
Creators | Ghaderidosst, Melody |
Publisher | Uppsala universitet, Tillämpad mekanik, Uppsala Univeristy |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | UPTEC Q, 1401-5773 ; 22009 |
Page generated in 0.0021 seconds