Current prices and demand for petroleum hydrocabons have generated an increase of oil spills around the country and the world. Health and environmental impacts associated to these organic pollutants represent a huge concern for the general public, leading the public and private sector to develop new technologies and methods to minimize or eliminate those risks.
Ex-Situ bioremediation through biopiles, as a main remediation technique to treat a wide range of hydrocarbons, has been a topic of considerable research interest over the last years. It provides an economical and environmental solution to restore the environment to background levels. Nevertheless, successful bioremediation under cold climate conditions is of considerable concern in countries like Canada, as low temperatures can delay the rate of bioremediation of oil hydrocarbons, thus limiting the operation of soil treatment facilities to certain times of the year. Recent research has found out that bioremediation could be conducted even at low or cold temperatures with larger periods of times. And even more, the addition of petroleum degrading microorganisms (bioaugmentation) and nutrients or biosurfactants (biostimulation) could enhance the process in some cases.
In the present study, a comprehensive assessment of bioaugmentation and biostimulation strategies for ex-situ bioremediation of petroleum contaminated soil under cold climate conditions is proposed. Field scale biopiles were constructed and subjected to different concentrations of commercial microbial consortia and mature compost, as bioaugmentation and biostimulation strategies, in a soil treatment facility at Moose Creek, Ontario over a period of 94 days (November 2012 to February 2013). Assessment and comparison of the biodegradation rates of total petroleum hydrocarbons (TPH) and their fractions were investigated. Furthermore, a response surface methodology (RSM) based on a factorial design to investigate and optimize the effects of the microbial consortia application rate and amount of compost on the TPH removal was also assessed.
Results showed that biopiles inoculated with microbial consortia and amended with 10:1 soil to compost ratio under aerobic conditions performed the best, degrading 82% of total petroleum hydrocarbons (TPHs) with a first-order kinetic degradation rate of 0.016 d_1, under cold temperature conditions. The average removal efficiencies for TPHs after 94 days for control biopiles, with no amendments or with microbial consortia or compost only treatments were 48%, 55%, and 52%, respectively. Statistical analyses indicated a significant difference (p < 0.05) within and between the final measurements for TPHs and a significant difference between the treatment with combined effect, and the control biopiles.
On the other hand, the modeling and optimization statistical analysis of the results showed
that the microbial consortia application rate, compost amendment and their interactions have a
significant effect on TPHs removal with a coefficient of determination (R2) of 0.88, indicating a high correlation between the observed and the predicted values for the model obtained. The optimum concentrations predicted via RSM were 4.1 ml m-3 for microbial consortia
application rate, and 7% for compost amendment to obtain a maximum TPH removal of
90.7%. This research contributes to provide valuable knowledge to practitioners about cost-effective and existing strategies for ex-situ bioremediation under cold weather conditions.
Identifer | oai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/30565 |
Date | January 2014 |
Creators | Gomez, Francisco |
Contributors | Sartaj, Majid |
Publisher | Université d'Ottawa / University of Ottawa |
Source Sets | Université d’Ottawa |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0021 seconds