La disponibilité en eau exerce un contrôle majeur sur les cycles des nutriments terrestres, à travers ses impacts sur le fonctionnement des plantes et des microorganismes du sol. Les changements de magnitude et de fréquence des épisodes de pluie (c’est-à-dire les régimes de précipitations) prédits par les modèles et associés au changement climatique vont ainsi avoir des conséquences importantes sur le fonctionnement des écosystèmes. Les écosystèmes arides et semi-arides sont particulièrement vulnérables à des changements de régime de précipitations, car ils sont déjà contraints par la disponibilité en eau. Cependant, des systèmes plus tempérés peuvent aussi être soumis à des périodes sèches qui peuvent affecter le fonctionnement plante-sol. Dans la présente thèse, les effets d’un historique de régimes de précipitations contrastés ont été étudiés dans des systèmes sol seul et plante-sol, afin de déterminer dans quelle mesure plusieurs semaines de régime hydrique peuvent moduler la réponse des écosystèmes à une réhumectation lors d’un événement pluvieux important. Premièrement, nous avons évalué les effets de régimes de précipitations contrastés dans des mésocosmes de sol seul, sur les communautés bactériennes et fongiques actives et inactives dans le sol, 2 et 5 jours après réhumectation. Nous avons employé une approche de 18O-SIP (stable isotope probing), en réhumectant le sol avec H218O puis en utilisant la métagénomique ciblée sur les bactéries et champignons du sol. Deuxièmement, nous avons mis en place deux expériences séparées en mésocosmes plante-sol avec couvert de blé. La première expérience sol-plante s’est intéressée à la profondeur de sol. Nous avons évalué les effets de régimes de précipitations contrastés sur le flux de C depuis les plantes vers les microorganismes du sol ainsi que la la réponse des microorganismes à différentes profondeurs de sol (de 0 à 35 cm) en utilisant des approches de traceur isotopiques stables (13C-CO2) et 18O-SIP, respectivement. La deuxième expérience plante-sol a évalué les effets de régimes de précipitations contrastés sur la dynamique temporelle (durant 29h) de la réponse du système plante-sol à la réhumectation. En outre, deux niveaux de fertilisation azotée ont permis de déterminer l’éventuelle modulation de la réponse par la disponibilité en N dans le sol. La réponse des communautés bactériennes et fongiques potentiellement actives dans le sol a été évaluée par métagénomique ciblée. La réponse de cycles biogéochimiques a été évaluée à l’aide de traceurs isotopiques stables (13C-CO2 et 15N- NO3-) pour quantifier le flux de C des plantes vers les microorganismes du sol et déterminer la compétition plantes-microorganismes du sol au cours du temps après réhumectation.Nos résultats ont montré un contrôle du régime de précipitation sur la morphologie et physiologie des plantes, les communautés microbiennes du sol ainsi que sur le cycle de l’azote du sol dans nos systèmes. En particulier, des régimes de précipitations peu fréquentes (cycles de périodes sèches longues suivies de périodes de pluie plus importantes) se sont traduits par une augmentation des potentiels de transformation de l’azote dans le sol et une réduction des stocks d’azote minéral dans le sol. Ceci a façonné l’environnement de la réponse de nos systèmes à la réhumectation, que nous avons évaluée en déterminant les dynamiques du C (couplage plantes-microbes et émissions de CO2 du sol), de l’azote du sol (compétition plantes-microorganismes du sol pour le N et émissions de N2O) et de la composition des communautés microbiennes du sol (bactéries et champignons actifs et potentiellement actifs) après réhumectation (...). / Water availability governs terrestrial nutrient cycles by impacting the functioning of both plants and of soil microorganisms. The predicted changes in precipitation patterns (i.e. the magnitude and frequency of precipitation events) associated with climate change, will thus likely have important consequences on ecosystem functioning. Dry and seasonally dry ecosystems are particularly vulnerable to changes in precipitation patterns, as they are already constrained to a large extent by water availability. However, more mesic systems may also experience dry periods that may impact plant-soil functions. In this thesis, experiments in soil-only systems and plant-soil systems were used to gain insight into how the legacy effects of several weeks of exposure to contrasted precipitation patterns set the scene for the rewetting response of the system. First, in an experiment using soil-only mesocosms, we evaluated the effects of contrasting precipitation regimes on the actively growing as well as the inactive bacterial and fungal communities 2 and 5 days after rewetting, using an 18O-SIP (stable isotope probing) approach by applying H218O followed by metagenomics targeting soil bacteria and fungi. Second, we performed two separate and complementary experiments using plant-soil mesocosms with wheat plant cover. The first plant-soil experiment focused on soil depth. It determined the effects of contrasting precipitation patterns on the flux of C from plants to microbes and the microbial response to rewetting at different soil depths, using a heavy isotope tracer approach (13C-CO2) and 18O-SIP with metagenomics respectively. The second plant-soil experiment evaluated the effects of a history of contrasting precipitation patterns on the dynamics of the rewetting response of the plant-soil system over time (over 29 hours post-rewetting). In addition, two levels of N inputs allowed to determine how N availability modulated plant-soil responses. The response of the potentially active soil bacterial and fungal communities to rewetting was assessed using targeted metagenomics. The responses of biogeochemical cycles were evaluated using heavy isotope tracers (13C-CO2 and 15N-NO3-) to quantify C flux from plants to soil microorganisms and plant-microbial competition for N over time post-rewetting.We found that precipitation patterns shaped plant morphology and physiology, microbial community composition as well as soil N cycling in our systems, which set contrasting scenes for the rewetting responses in our systems. In particular, infrequent precipitation patterns (cycles of longer dry periods followed by larger magnitude rain events) resulted in increased microbial N transformation potentials and smaller inorganic N pools. The rewetting responses were determined by evaluating C dynamics (plant-microbial coupling and soil CO2 efflux rate), N dynamics (plant-microbial competition for N and soil N2O efflux rate) and microbial dynamics (composition of active and potentially active bacterial and fungal communities after rewetting). First, we found that plant-microbial coupling (i.e the microbial assimilation of C from fresh photosynthate) may be reduced under more infrequent precipitation patterns, especially near the soil surface, and under conditions of low N availability. Our findings also suggest that whilst in soil-only systems, dead microbial cells appear to be a major source fuelling soil CO2 efflux pulse upon rewetting, in plant-soil systems root respiration plays an important role in the magnitude of the CO2 efflux upon rewetting. Second, concerning soil N dynamics, we found, in concurrence with previous studies, that soil microorganisms were the stronger competitor for N over short time scales, likely due to their overall fast response rates and high affinity for substrate, whilst plants outcompeted soil microbes for soil N assimilation, over longer time scales likely taking advantage of the fast microbial turnover (...).
Identifer | oai:union.ndltd.org:theses.fr/2018UBFCK017 |
Date | 29 May 2018 |
Creators | Engelhardt, Ilonka |
Contributors | Bourgogne Franche-Comté, Barnard, Romain, Philippot, Laurent |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0032 seconds