Return to search

The effect of forest to pasture conversion on soil biological diversity and function

Recent declines in returns from primary forest products in New Zealand and projected increases in world food prices have led to the land-use conversion from plantation forest to pastoral farming in many lowland areas. After decades of forest cover the soils are in many cases less than adequate for pastoral farming, as they are acidic, with toxic levels of exchangeable aluminum, and contain low levels of available nitrogen (N), very high carbon (C):N ratio, and are devoid of earthworms and structural integrity. Overcoming the major site limitations of low soil pH and available N was a major priority and a field experiment was established in April 2005 to determine the impact of various rates of lime and N in relation to pasture establishment and production. Concerns about the short and long-term effects of these inputs on biological soil quality gave rise to the present study. The effects of land-use change and establishment inputs were assessed by comparison of selected treatment plots with two adjacent reference sites (long-term pasture and a 60–year Pinus radiata forest) on the same soil type. The effects of lime and N on soil biological quality were investigated under field and controlled environment conditions by determination of: microbial community structure (phospholipid fatty acids - PLFA), microbial biomass (total PLFA), and microbial activity (dehydrogenase activity). Soil physical (percentage water-stable aggregates) and chemical (pH, and total C and N) properties were also determined. Similarly, the effects of earthworm addition on soil biological properties were explored in a short-term glasshouse pot experiment. The role of earthworms as indicators of soil biological quality in the field was assumed by nematodes and these were assessed in field trial plots and the reference sites mentioned above. Land-use change and applications of lime and N contributed to changing the microbial community structure determined by principal component analysis of transformed PLFA data. However, the effect of lime was more pronounced in the field, while N contributed most to changing microbial community structure in the glasshouse. Mean microbial activity in the field increased from 4 µg dwt/hr without lime to 16 and 21 µg dwt/hr where lime was applied at 5 and 10 tons/hectare (t/ha), respectively. Mean microbial activity in the field was markedly higher (7-fold) than in the glasshouse at similar rates of lime. Lime application also increased soil moisture retention in the field, mean gravimetric soil moisture increased from 0.33 in control plots to 0.38 and 0.39 in plots treated with 5 and 10 t/ha lime, respectively. Lime application was associated with greater soil aggregate stability. Soils from test plots treated with 5 and 10 tons/ha lime had 45-50% water-stable aggregates compared to 34% in treatments without lime. After 16 weeks in pots, earthworm treatments increased mean plant dry matter (DM)/pot by at least 19% above the control. The increase was attributed primarily to greater N mineralization in the presence of earthworms. For the duration of the trial the earthworm species tested (Apporectodea caliginosa and Lumbricus rubellus, individually or combined) did not affect any of the measured soil microbial properties. However, the survival rate of A. caliginosa was 83% compared to 25% for L. rubellus. The control not receiving any lime or N and plots treated with 10t/ha lime and 200 kgN/ha had similar nematodes species composition, comprising 40% each of bacterial and fungal feeding nematodes. They differed markedly from the reference sites as the forest soil was dominated by plant associated species (38%) and the long-term pasture had 44% plant parasitic nematodes. Accordingly, the soil food web condition inferred from nematode faunal analysis characterized all test plots as basal, stressed and depleted, while the forest soil was categorized as highly structured and fungal dominated. The findings of this thesis demonstrated that land-use change from forest to pasture can have significant impacts on soil biological properties, earthworms can contribute to pasture productivity even in the short term, and nematode faunal analysis is a robust and reliable indicator of soil biological quality.

Identiferoai:union.ndltd.org:ADTP/203717
Date January 2008
CreatorsLloyd, Davidson A.
PublisherLincoln University
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightshttp://purl.org/net/lulib/thesisrights

Page generated in 0.0025 seconds