Return to search

A microfluidics-based in vitro model of the gastrointestinal human–microbe interface

Changes in the human gastrointestinal microbiome are associated with several diseases. To infer causality, experiments in representative models are essential, but widely used animal models exhibit limitations. Here we present a modular, microfluidics-based model (HuMiX, human-microbial crosstalk), which allows co-culture of human and microbial cells under conditions representative of the gastrointestinal human-microbe interface. We demonstrate the ability of HuMiX to recapitulate in vivo transcriptional, metabolic and immunological responses in human intestinal epithelial cells following their co-culture with the commensal Lactobacillus rhamnosus GG (LGG) grown under anaerobic conditions. In addition, we show that the co-culture of human epithelial cells with the obligate anaerobe Bacteroides caccae and LGG results in a transcriptional response, which is distinct from that of a co-culture solely comprising LGG. HuMiX facilitates investigations of host-microbe molecular interactions and provides insights into a range of fundamental research questions linking the gastrointestinal microbiome to human health and disease.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/614760
Date11 May 2016
CreatorsShah, Pranjul, Fritz, Joëlle V., Glaab, Enrico, Desai, Mahesh S., Greenhalgh, Kacy, Frachet, Audrey, Niegowska, Magdalena, Estes, Matthew, Jäger, Christian, Seguin-Devaux, Carole, Zenhausern, Frederic, Wilmes, Paul
ContributorsUniv Arizona, Ctr Appl Nanobiosci & Med, Univ Arizona, Dept Basic Med Sci
PublisherNATURE PUBLISHING GROUP
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
TypeArticle
RightsThis work is licensed under a Creative Commons Attribution 4.0 International License.
Relationhttp://www.nature.com/doifinder/10.1038/ncomms11535

Page generated in 0.002 seconds