Return to search

Excess molar enthalpies of binary and ternary systems involving hydrocarbons and ethers

In modern separation design, an important part of many phase-equilibrium calculations is the mathematical representation of pure-component and mixture enthalpies. Mixture enthalpy data are important not only for determination of heat loads, but also for the design of distillation units. Further, mixture enthalpy data, when available, are useful for extending vapor-liquid equilibria to higher (or lower) temperatures, through the use of the Gibbs-Helmholtz equation.
In this connection excess molar enthalpies for several binary and ternary mixtures involving ethers and hydrocarbons have been measured at the temperature 298.15 K and atmospheric pressure, over the whole mole fraction range. Values of the excess molar enthalpies were measured by means of a modified flow microcalorimeter (LKB 10700-1) and the systems show endothermic behavior.
The Redlich-Kister equation has been used to correlate experimental excess molar enthalpy data of binary mixtures. Smooth representations of the excess molar enthalpy values of ternary mixtures are accomplished by means of the Tsao-Smith equation with an added ternary contribution term and are used to construct excess enthalpy contours on Roozeboom diagrams. The values of the standard deviations indicate good agreement between experimental results and those calculated from the smoothing equations.
The experimental excess enthalpy data are also correlated and predicted by means of solution theories (Flory theory and Liebermann-Fried model) for binary and ternary mixtures, respectively. These solution theories correlate the binary heats of mixing data with reasonable accuracy. The prediction of ternary excess molar enthalpy by means of the solution theories are also presented on Roozeboom diagrams. The predictions of ternary excess enthalpy data by means of these theories are reasonably reliable.

Identiferoai:union.ndltd.org:USASK/oai:usask.ca:etd-01042011-112328
Date14 January 2011
CreatorsHasan, S. M. Nazmul
ContributorsPeng, Jian, Soltan, Jafar, Phoenix, Aaron, Peng, Ding-Yu
PublisherUniversity of Saskatchewan
Source SetsUniversity of Saskatchewan Library
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://library.usask.ca/theses/available/etd-01042011-112328/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.002 seconds