Submitted by (ana.araujo@ufrpe.br) on 2016-07-05T16:55:56Z
No. of bitstreams: 1
Evert Elvis Batista Almeida.pdf: 8214568 bytes, checksum: 34db767d9a38f53b7b60aaf92ca37a20 (MD5) / Made available in DSpace on 2016-07-05T16:55:56Z (GMT). No. of bitstreams: 1
Evert Elvis Batista Almeida.pdf: 8214568 bytes, checksum: 34db767d9a38f53b7b60aaf92ca37a20 (MD5)
Previous issue date: 2009-02-26 / We applied a non-supervisioned data clustering technique based on a map of the problem into an inhomogeneous granular magnet problem. The physical behavior of the magnet is studied through the usual Monte Carlo method. Each data item is described by a set of numerical attributes, interpreted as points in a multiple-dimensional Euclidian space. The mapping consists in associating a Potts spin to each data point. The physical system is described by a disordered Potts Hamiltonian with several states with an exponentially decaying interaction among spins. The magnet reaches a superparamagnetic state at high temperatures in which the spins in certain grains are strongly correlated whereas the grains are loosely linked. In this way, each grain corresponds to a group or cluster. We implemented the method in a microcanonical ensemble where the conserved total energy is the control parameter. The temperature is calculated during the simulation and, besides thermodynamic stable states, it is possible to sample unstable and metastable state as well. We work with three artificial multiple-dimensional data set and a four-dimensional real data set. We obtained good results in all cases and discuss some issues concerning the microcanonical implementation of the superparamagnetic data clustering. / Aplicamos um método não supervisionado de agrupamento de dados para identificar padrões em vários conjuntos dados. A técnica baseia-se em um mapeamento do problema em um sistema magnético granular heterogêneo, cujo comportamento é investigado através de métodos Monte Carlo comumente empregado no campo da física estatística. Cada objeto é descrito por um conjunto de atributos de valores numéricos, interpretados como um ponto em um espaço euclidiano de dimensão apropriada. O mapeamento consiste em associar a cada item do conjunto, um ponto no espaço, um spin de Potts. O sistema físico é descrito por um hamiltoniano de Potts de muitos estados, no qual a interação entre os spins decai exponencialmente com a distância entre eles. Itens semelhantes, próximos, interagem fortemente enquanto que aqueles mais distantes entre si interagem apenas fracamente. O magneto atinge um estado superparamagnético para temperaturas suficientemente altas, no qual os spins de alguns grãos permanecem fortemente correlacionados, porém, os grãos estão fracamente ligados entre si. Cada grão corresponde a um grupo. Implementamos o método no ensemble microcanônico, no qual a energia total é conservada e constitui o parâmetro de controle. Nesse caso, a temperatura é calculada ao longo do processo e podemos acessar estados termodinamicamente estáveis, metaestáveis, bem como, instáveis. Trabalhamos com três conjuntos artificiais de dados, em duas e três dimensões, e um conjunto de dados reais com quatro dimensões. O desempenho do método foi satisfatório em todos os casos investigados.
Identifer | oai:union.ndltd.org:IBICT/oai:tede2:tede2/4977 |
Date | 26 February 2009 |
Creators | ALMEIDA, Evert Elvis Batista de |
Contributors | SOUZA, Adauto José Ferreira de, CAMPOS, Paulo Roberto de Araújo, STOSIC, Tatijana, REN, Tsang Ing |
Publisher | Universidade Federal Rural de Pernambuco, Programa de Pós-Graduação em Biometria e Estatística Aplicada, UFRPE, Brasil, Departamento de Estatística e Informática |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFRPE, instname:Universidade Federal Rural de Pernambuco, instacron:UFRPE |
Rights | info:eu-repo/semantics/openAccess |
Relation | 768382242446187918, 600, 600, 600, -6774555140396120501, -5836407828185143517 |
Page generated in 0.0027 seconds