Return to search

Development of a Microelectrode Array Sensing System for Water Quality Monitoring

This thesis reports the design and fabrication of a low-cost reliable microelectrode array sensing platform and its application toward water quality monitoring, including heavy metal ion detection. Individually addressable microelectrodes were designed in a planar array on a nonconductive glass substrate by a photolithography method. The size, shape, composition, and functionality of the microelectrodes were theoretically explored in order to maximize performance. The microelectrode array sensing platform was proven and characterized in the K3Fe(CN)6 electrochemical standard using cyclic voltammetry. The sensor platform exhibited well defined voltammograms and had increased sensitivity relative to a commercially available microelectrode of similar size. Feasibility for application to heavy metal ions, copper and lead, detection in aqueous solutions was demonstrated utilizing the electrochemical method of anodic stripping voltammetry. Well defined voltammograms for the copper and lead ions were obtained with individual microelectrodes of the sensor platform, and compared against the similar sized commercially available microelectrode; increased sensitivity was observed.

Identiferoai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-1644
Date01 May 2008
CreatorsGardner, Robert D.
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact Andrew Wesolek (andrew.wesolek@usu.edu).

Page generated in 0.0014 seconds