Return to search

A study of microemulsion viscosity with consideration of polymer and co-solvent additives

With the dramatic increase in the worldwide demand for the crude oil and with the fact that the oil and gas resources are depleting, the enhanced oil recovery process plays an important role to increase the production from the existing hydrocarbon reservoirs. Chemical enhanced oil recovery is one of the most important techniques to unlock significant amount of trapped oil from oil reservoirs. Surface agent materials (Surfactants) are used to lower the interfacial tension (IFT) between water and oil phases to ultralow values and mobilize the trapped oil. When surfactant, water, and oil are mixed together they form a thermodynamically stable phase called microemulsion which can be characterized by ultralow interfacial tension and the ability to solubilize both aqueous and oil compounds. Another characteristic of microemulsion solution is its viscosity which plays an important role in the creation and movement of the oil bank. The microemulsion micro-structure is complex and its viscosity is difficult to predict. Various viscosity models and correlations are presented in the literature to describe microemulsion viscosity behavior, but they fail to represent the rheological behavior of many microemulsion mixtures. Most of these models are valid in the lower and higher ranges of solute where one of the domains is discontinuous. The majority of the models fail to calculate the rheology of microemulsion phase in bicontinuous domains. In this work, we present a systematic study of the rheological behavior of microemulsion systems and the effect of additives such as polymer and co-solvent on rheological properties of microemulsions. Several laboratory experiments were conducted to determine the rheological behavior of surfactant solutions. A new empirical model for the viscosity of microemulsion phase as a function of salinity is introduced. The model consists of three different correlations one for each phase type of Windsor phase behaviors. The proposed model is validated using a number of experimental results presented in this document. The proposed viscosity model is implemented in the UTCHEM simulator and the simulator results are compared with the coreflood experiments. Excellent matches were obtained for the pressure. We further improved the proposed viscosity model to incorporate the effect of polymer and co-solvent on the microemulsion viscosity. / text

Identiferoai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/25266
Date22 July 2014
CreatorsDashti, Ghazal
Source SetsUniversity of Texas
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf

Page generated in 0.0016 seconds