Woven textile fabrics were designed and constructed from hydrophilic and hydrophobic spun yarns to give planar substrates containing amphiphilic microchannels with defined orientations and locations. Polypropylene fibers were spun to give hydrophobic yarns, and the hydrophilic yarns were spun from a poly(ethylene terephthalate) copolyester. Water wicking rates into the fabrics were measured by video microscopy and longitudinal wicking tests from single drops and from reservoirs. Intra-yarn microchannels in the hydrophilic polyester yarns were shown to selectively transport aqueous fluids, with the flow path governed by the placement of the hydrophilic yarns in the fabric. Simultaneous wicking of an aqueous and hydrocarbon fluid into the hydrophilic and hydrophobic microchannels of an amphiphilic fabric was successfully demonstrated. The high degree of interfacial contact and micron-scale diffusion lengths of such co-flowing immiscible fluid streams inside amphiphilic fabrics suggest potential applications as highly scalable and affordable microcontactors for industrial liquid-liquid extractions. The efficiency of liquid-liquid extractions carried out with the amphiphilic fabrics was evaluated. Solvent extraction efficiencies were shown to reach up to ~98%.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/42908 |
Date | 14 November 2011 |
Creators | Owens, Tracie LeeAnne |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Detected Language | English |
Type | Dissertation |
Page generated in 0.0016 seconds