Return to search

Genetic Analysis and Cell Manipulation on Microfluidic Surfaces

Personalized cancer medicine is a cancer care paradigm in which diagnostic and therapeutic strategies are customized for individual patients. Microsystems that are created by Micro-Electro-Mechanical Systems (MEMS) technology and integrate various diagnostic and therapeutic methods on a single chip hold great potential to enable personalized cancer medicine. Toward ultimate realization of such microsystems, this thesis focuses on developing critical functional building blocks that perform genetic variation identification (single-nucleotide polymorphism (SNP) genotyping) and specific, efficient and flexible cell manipulation on microfluidic surfaces. For the identification of genetic variations, we first present a bead-based approach to detect single-base mutations by performing single-base extension (SBE) of SNP specific primers on solid surfaces. Successful genotyping of the SNP on exon 1 of HBB gene demonstrates the potential of the device for simple, rapid, and accurate detection of SNPs. In addition, a multi-step solution-based approach, which integrates SBE with mass-tagged dideoxynucleotides and solid-phase purification of extension products, is also presented. Rapid, accurate and simultaneous detection of 4 loci on a synthetic template demonstrates the capability of multiplex genotyping with reduced consumption of samples and reagents. For cell manipulation, we first present a microfluidic device for cell purification with surface-immobilized aptamers, exploiting the strong temperature dependence of the affinity binding between aptamers and cells. Further, we demonstrate the feasibility of using aptamers to specifically separate target cells from a heterogeneous solution and employing environmental changes to retrieve purified cells. Moreover, spatially specific capture and selective temperature-mediated release of cells on design-specified areas is presented, which demonstrates the ability to establish cell arrays on pre-defined regions and to collect only specifically selected cell groups for downstream analysis. We also investigate tunable microfluidic trapping of cells by exploiting the large compliance of elastomers to create an array of cell-trapping microstructures, whose dimensions can be mechanically modulated by inducing uniform strain via the application of external force. Cell trapping under different strain modulations has been studied, and capture of a predetermined number of cells, from single cells to multiple cells, has been achieved. In addition, to address the lack of aptamers for targets of interest, which is a major hindrance to aptamer-based cell manipulation, we present a microfluidic device for synthetically isolating cell-targeting aptamers from a randomized single-strand DNA (ssDNA) library, integrating cell culturing with affinity selection and amplification of cell-binding ssDNA. Multi-round aptamer isolation on a single chip has also been realized by using pressure-driven flow. Finally, some perspectives on future work are presented, and strategies and notable issues are discussed for further development of MEMS/microfluidics-based devices for personalized cancer medicine.

Identiferoai:union.ndltd.org:columbia.edu/oai:academiccommons.columbia.edu:10.7916/D8SN0712
Date January 2014
CreatorsZhu, Jing
Source SetsColumbia University
LanguageEnglish
Detected LanguageEnglish
TypeTheses

Page generated in 0.0121 seconds