Pendant la solidification d’alliages se développe au niveau de l’interface solide-liquide une microstructure dont les caractéristiques influencent fortement les propriétés macroscopiques du matériau. Sa formation est un processus dynamique dans lequel le réseau émerge, s’organise et s’ordonne progressivement. Sur terre, la convection dans la phase liquide perturbe la formation de cette microstructure. Pour éliminer la convection tout en conservant des échantillons tridimensionnels, des expériences en solidification dirigée d'alliages transparents (matériaux organiques modèles des alliages métalliques) ont été réalisées dans l’instrument DECLIC–DSI (CNES–NASA), en régime de transport diffusif à bord de la Station Spatiale Internationale. Une quantité considérable de données brutes a été obtenue durant la campagne d’expériences qui s’est déroulée entre 2010 et 2011.L’objectif de ces travaux de thèse est d'analyser la dynamique de formation et d’évolution du réseau interfacial, de sa naissance à l’état stationnaire. Afin d’exploiter les données, il a fallu développer des procédures performantes d’analyse d’images permettant le traitement automatisé de séquences complètes d’images. Nous avons également développé une procédure permettant d’analyser les séquences d’images interférométriques et ainsi de suivre l’évolution temporelle de la forme tridimensionnelle de l’interface.Deux axes principaux structurent ces travaux : d’une part, l’étude des mécanismes de sélection de l’espacement primaire, taille caractéristique de la microstructure; et d'autre part, la caractérisation approfondie du régime oscillant, instabilité secondaire du réseau cellulaire. / The study of solidification microstructure formation is of utmost importance for the design and processing of materials, as solid-liquid interface patterns largely govern mechanical and physical properties. Pattern selection occurs under dynamic conditions of growth. The materials of choice for direct visualization of interface dynamics are transparent organic analogs. On Earth, convection alters the formation of cellular and dendritic microstructures. The micro-gravity of Space is therefore mandatory for fluid flow elimination in bulk samples. Over a hundred days of experiments between 2010 and 2011 were carried out in the DECLIC-DSI, (CNES-NASA) onboard the International Space Station. During the experimental campaign, a huge amount of data, mainly images, was obtained. The objective of this thesis work is to study the dynamics of formation and evolution of the interfacial array, from its birth to its steady state.A significant amount of work was the development of in-house software to robustly treat the white-light and interferometric image sequences.Two major topics are examined in this work: First, the study of the selection of primary spacing (the microstructure's characteristic size). Second, the in-depth characterization of pattern oscillation, which is a secondary instability of the cellular pattern. The analysis of the results is supported by 3D phase-field simulation, undertaken by the modellers in this team and in the team of Pr. A. Karma (Northeastern University, Boston).
Identifer | oai:union.ndltd.org:theses.fr/2018AIXM0174 |
Date | 19 June 2018 |
Creators | Pereda, Jorge |
Contributors | Aix-Marseille, Nguyen Thi, Henri, Bergeon, Nathalie |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0023 seconds