Return to search

Micromechanical modelling of creep in wooden materials

Wood is a complex organic orthotropic viscoelastic material with acellular structure. When stressed, wood will deform over timethrough a process called creep. Creep affects all wooden structureand can be difficult, time-consuming and expensive to measure. For this thesis, a simple computer model of the woodenmicrostructure was developed. The hypothesis was that the modelledmicrostructure would display similar elastic and viscoelasticproperties as the macroscopic material. The model was designed by finding research with cell geometries ofconiferous trees measured. The model considered late- and earlywoodgeometries as well as growth rings. Rays were ignored as they onlycomposed 5-10% of the material. By applying a finite element method, the heterogeneous late- andearlywood cells could be homogenized by sequentially loading thestrain vector and calculating the average stress. The computer model produced stiff but acceptable values for theelastic properties. Using the standard linear solid method to modelviscoelasticity, the computer model assembled creep curvescomparable to experimental results. With the model sufficiently validated, parametric studies on thecell geometry showed that the elastic and viscoelastic propertieschanged greatly with cell shape. An unconventional RVE was alsotested and shown to give identical result to the standard RVE. Although not perfect, the model can to a certain degree predict theelastic and viscoelastic characteristics for wood given itscellular geometry. Inaccuracies were thought to be caused byassumptions and approximations when building the model.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-444796
Date January 2021
CreatorsFalkeström, Oskar, Coleman, Kevin, Nilsson, Malin
PublisherUppsala universitet, Tillämpad mekanik, Uppsala universitet, Tillämpad mekanik, Uppsala universitet, Tillämpad mekanik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationMATVET-F ; 21006

Page generated in 0.0019 seconds