Return to search

Entwicklung von Verfahren zur Erzeugung anisotroper Mikrostrukturen und VEGF-Gradienten auf Collagen Typ I-Scaffolds für Zellkulturanwendungen

Die Versorgung mit Nährstoffen und Sauerstoff in artifiziellen, 3D Scaffolds für das Tissue Engineering ist Grundvoraussetzung für die Viabilität darin kultivierter Zellen. Die Kombination aus definierter Architektur und biomimetischer Zusammensetzung ist dabei entscheidend, sodass neben dem Stofftransport auch die Adhäsion, Proliferation, Migration und Morphologie von Zellen gesteuert werden können. Die Verwendung von Komponenten der nativen Extrazellulären Matrix, wie Collagen Typ I (COL I), als Scaffold-Material wird dafür als optimal angesehen. Jedoch stellt die Gestaltung der Architektur und Bereitstellung instruktiver Elemente zur Steuerung der Zellverhaltens bei COL I-basierten Scaffolds, aufgrund der mechanischen und biochemischen Eigenschaften des COL I, besondere Ansprüche an die Bearbeitungsverfahren. Ziel dieser Arbeit war es daher, Verfahren zur Ausstattung von modularisierbaren, COL I-basierten Membranen mit einer instruktiven biochemischen Zusammensetzung, Mikroarchitekturen als Basis für ein initiales vaskuläres System und Gradienten des Vascular Endothelial Growth Factors (VEGF) zu entwickeln. Diese Scaffolds sollten anschließend hinsichtlich der Beeinflussung des Wachstums, der Orientierung und der gerichteten Migration von
humanen Endothelzellen aus der Nabelschnurvene (HUVEC) charakterisiert werden.
COL I-Scaffolds konnten durch Plastic Compression in Membranform hergestellt und mit Fibronectin (FN) und Hyaluronsäure (HA, mit hohem Molekulargewicht) ausgestattet werden. Die Inkorporation von FN erhöhte die HUVEC-Proliferation, während die Proliferationsrate bei der verwendeten HA konstant blieb. Anisotrope Mikrostrukturen als Basis für ein vaskuläres System und zur HUVECOrientierung wurden durch einen 3-stufigen Prozess auf den COL I-Membranen erzeugt. Dabei wurde die Mikrostrukturübertragung durch mikrostrukturierte Polystyren-Stempel in einem Druckumformprozess realisiert. Die erhaltenen Mikrogräben mit Breiten von 10-40 µm beeinflussten die Orientierung der HUVEC deutlich. Für die Erzeugung von VEGF-Gradienten zur Steuerung der gerichteten Migration von HUVEC wurde ein Immersionsverfahren mit Hilfe der Modellproteine Bovines Serumalbumin
und Hyaluronidase entwickelt. Dieses ermöglichte die Erzeugung eines linearen, graduellen Konzentrationsverlaufs der Modellproteine auf der Membranoberfläche. Der entwickelte Prozess konnte auf VEGF mit einem minimalen Gradientenprofil von 3,8-11,8 pg/mm² nach Immersion in 100 ng/mL VEGF-Lösung übertragen werden. Erste Versuche zur Induktion der HUVEC-Migration zeigten, dass ein erfolgreiches Gradientenprofil jedoch noch gefunden werden muss. Die erzeugten COL I-Membranen bilden eine gute Ausgangsposition für die Bereitstellung modularer, biomimetischer Tissue-Engineering-Scaffolds, mit initialer Vaskularisierung und zellinstruktiven Elementen. Außerdem besitzen sie das Potential, durch eine Vielzahl von Bio-Engineering-Methoden modifiziert und biochemisch den Anforderungen an das zelluläre Mikromilieu ausgestattet zu werden. / The supply of nutrients and oxygen in artificial, three-dimensional scaffolds for tissue engineering is a basic prerequisite for the viability of cells cultivated therein. The combination of defined architecture and biomimetic composition are crucial in this context, so that besides the metabolic transport, the adhesion, proliferation, migration and morphology of cells can also be controlled. The use of native extracellular matrix components, such as collagen type I (COL I), as scaffold material is considered optimal for this purpose. However, designing the architecture and providing instructive elements to control cell behavior in COL I-based scaffolds poses special challenges to processing methods due to the mechanical and biochemical properties of COL I. Therefore, the aim of this work was to develop basic procedures to equip modularizable COL I-based membranes with instructive biochemical composition, microarchitectures as initial vascular system, and vascular endothelial growth factor (VEGF) gradients and to characterize the obtained scaffolds with respect to influencing human umbilical vein endothelial cell (HUVEC) growth, orientation, and migration.
It was shown that COL I scaffolds can be prepared by Plastic Compression in membrane form and equipped with fibronectin (FN) and hyaluronic acid (HA, with high molecular weight). Incorporation of FN increased HUVEC proliferation, whereas the proliferation rate remained constant with the HA used. Anisotropic microstructures as a basis for a vascular system and for HUVEC orientation were generated by a 3-step process on the COL I membranes. In this process, the microstructure transfer was realized by microstructured polystyrene stamps in a pressure forming process. The obtained microtrenches with widths of 10-40 µm significantly affected the orientation of HUVEC. For the generation of VEGF gradients to control the directional migration of HUVEC, an immersion technique was developed using the model proteins bovine serum albumin and hyaluronidase. This allowed the generation of a linear, gradual concentration gradient of the model proteins on the membrane surface. The developed process could be applied to VEGF with a minimum gradient profile of 3.8-11.8 pg/mm² after immersion in 100 ng/mL VEGF solution. Initial experiments to induce HUVEC migration showed that a successful gradient profile still needs to be found, however. The generated COL I membranes provide a good starting point for the provision of modular, biomimetic tissue engineering scaffolds, with initial vascularization and cell-instructive elements. They also possess the potential to be modified by a variety of bioengineering methods and biochemically equipped to meet the requirements of the cellular microenvironment.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:75777
Date25 August 2021
CreatorsBerger, Steffen
ContributorsSalchert, Katrin, Werner, Carsten, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageGerman
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relation10.3233/JCB-180012

Page generated in 0.0088 seconds