Return to search

Nano-Scale Investigation of Mechanical Characteristics of Main Phases of Hydrated Cement Paste

Hydrated cement paste (HCP), which is present in various cement-based materials, includes a number of constituents with distinct nano-structures. The elastic properties of the HCP crystals are calculated using molecular dynamics (MD) methods. The accuracy of estimated values is verified by comparing them with the results from experimental tests and other atomistic simulation methods. The outcome of MD simulations is then extended to predict the elastic properties of the C-S-H gel by rescaling the values calculated for the individual crystals. To take into account the contribution of porosity, a detailed microporomechanics study is conducted on low- and high-density types of C-S-H. The obtained results are verified by comparing the rescaled values with the predictions from nanoindentation tests. Moreover, the mechanical behavior of the HCP crystals is examined under uniaxial tensile strains. From the stress-strain curves obtained in the three orthogonal directions, elastic and plastic responses of the HCP crystals are investigated. A comprehensive chemical bond and structural damage analysis is also performed to characterize the failure mechanisms of the HCP crystals under high tensile strains. The outcome of this study provides detailed information about the nonlinear behavior, plastic deformation, and structural failure of the HCP phases and similar atomic structures.

Identiferoai:union.ndltd.org:UMASS/oai:scholarworks.umass.edu:masters_theses_2-1177
Date18 March 2015
CreatorsHajilar, Shahin
PublisherScholarWorks@UMass Amherst
Source SetsUniversity of Massachusetts, Amherst
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMasters Theses

Page generated in 0.0022 seconds