This master's thesis deals with the challenges of undesirable thermal expansion in lightweight materials. Thermal expansion of parts or components can lead to malfunction or breakdowns of complete systems in demanding environment where a large temperature gradient often exists. This work investigates a class of lightweight materials of which the thermal expansion coefficient can be controlled. Moreover, an additive manufacturing approach to produce these thermal management materials with high fidelity and reliability are critical to reach this goal.
To achieve these two major research objectives analytic predictions, simulations, and measurement of thermal expansion coefficient with respect to temperature changes are conducted. Design and optimization of a high precision multi-material manufacturing apparatus has been conducted, leading to significant increase in production quality including reliability, efficiency, and costs. / Master of Science / This master’s thesis deals with the challenges of undesirable thermal expansion in lightweight materials. Under thermal load parts or components usually expand and this can lead to malfunction or breakdowns. To encounter this issue of the undesired expansion this work investigates a class of lightweight materials of which the thermal expansion coefficient can be controlled. Moreover, an additive manufacturing approach to produce these thermal management materials with high fidelity and reliability are critical to reach this goal.
To achieve these two major research objectives analytic predictions, simulations, and measurement of thermal expansion coefficient with respect to temperature changes are conducted. Design and optimization of a high precision multi-material manufacturing apparatus has been conducted, leading to significant increase in production quality including reliability, efficiency, and costs.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/79453 |
Date | 28 September 2017 |
Creators | Karch, Matthias Ottmar |
Contributors | Mechanical Engineering, Anderl, Reiner, Zheng, Xiaoyu, Bohn, Jan Helge, Hampe, Manfred J. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0022 seconds