Return to search

Seismic absorption estimation and compensation

As seismic waves travel through the earth, the visco-elasticity of the earth's medium will cause energy dissipation and waveform distortion. This phenomenon is referred to as seismic absorption or attenuation. The absorptive property of a medium can be described by a quality factor Q, which determines the energy decay and a velocity dispersion relationship.

Four new ideas have been developed in this thesis to deal with the estimation and application of seismic absorption. By assuming that the amplitude spectrum of a seismic wavelet may be modeled by that of a Ricker wavelet, an analytical relation has been derived to estimate a quality factor from the seismic data peak frequency variation with time. This relation plays a central role in quality factor estimation problems. To estimate interval Q for reservoir description, a method called reflectivity guided seismic attenuation analysis is proposed. This method first estimates peak frequencies at a common midpoint location, then correlates the peak frequency with sparsely-distributed reflectivities, and finally calculates Q values from the peak frequencies at the reflectivity locations. The peak frequency is estimated from the prestack CMP gather using peak frequency variation with offset analysis which is similar to amplitude variation with offset analysis in implementation. The estimated Q section has the same layer boundaries of the acoustic impedance or other layer properties. Therefore, the seismic attenuation property obtained with the guide of reflectivity is easy to interpret for the purpose of reservoir description. To overcome the instability problem of conventional inverse Q filtering, Q compensation is formulated as a least-squares (LS) inverse problem based on statistical theory. The matrix of forward modeling is composed of time-variant wavelets. The LS de-absorption is solved by an iterative non-parametric approach. To compensate for absorption in migrated seismic sections, a refocusing technique is developed using non-stationary multi-dimensional deconvolution. A numerical method is introduced to calculate the blurring function in layered media, and a least squares inverse scheme is used to remove the blurring effect in order to refocus the migrated image. This refocusing process can be used as an alternative to regular migration with absorption compensation.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:BVAU.2429/2820
Date05 1900
CreatorsZhang, Changjun
PublisherUniversity of British Columbia
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation

Page generated in 0.0019 seconds