Return to search

Biofilm growth on super-acidic metal-oxide films

In nature, urea is hydrolyzed to ammonia and bicarbonate primarily by enzymes called ureases. As urine waste contains multiple important plant nutrients, there is interest in the waste treatment field to use urine waste products as plant fertilizers. Since urease enzymes are usually found in biofilms, one can prevent nitrogen loss in urine waste by preventing biofilm formation in the surrounding environment. In recent years, many new strategies to prevent microbial growth have been developed, especially within the field of nanoscience. The aim of this master's thesis was to develop a method for growing and analyzing urease-active biofilms and to investigate whether super-acidic metal- oxide surfaces could prevent biofilm growth. In this project, the methods are divided into two sections: methods for producing super-acidic metal-oxide surfaces and methods for growing and analyzing biofilms. The method for growing biofilms was developed through successive experiments, with the results of one experiment being used to design the next. Three batches of antimicrobial plates were manufactured, and seven biofilm experiments were conducted. In these experiments, biofilms were able to grow on antimicrobial plates, but the results were somewhat inconclusive. The biofilms were analyzed by microscopy, since no quantitative analysis method was successful in this study.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-452878
Date January 2021
CreatorsJansson, Linnéa
PublisherUppsala universitet, Institutionen för biologisk grundutbildning
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationUPTEC X ; 21029

Page generated in 0.0022 seconds