The thesis focuses on the development of instruments used for surfaces and nanostructures characterization. Individual techniques of scanning probe microscopy provide different information of the sample surface. The resolution of scanning probe microscopy, providing 3D topography information, reaches subnanometer values or even an atomic level. Therefore, the scanning probe microscopy is one of the most employed method in the field of nanotechnology. The thesis describes the details of development of two scanning probe microscopes intended for measurement under ultra high vacuum conditions. As for the first one, many changes were proposed leading to its better variability, extended functionality and increased user comfort. The second microscope is being design with the aim of its combination with other analytic techniques, especially with scanning electron microscopy. An integral part of scanning probe microscopes is a precise positioning system for navigation of the probe to the selected site. Therefore, the thesis also deals with the development of linear piezoceramic actuators used not only in the ultra high vacuum compatible microscopes but also as a general purpose nanomanipulators.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:234210 |
Date | January 2015 |
Creators | Nováček, Zdeněk |
Contributors | Ošťádal, Ivan, Fejfar, Antonín, Šikola, Tomáš |
Publisher | Vysoké učení technické v Brně. Fakulta strojního inženýrství |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0019 seconds