Return to search

Modélisation des phénomènes de dissolution lors des phases précoces et avancées d'un accident grave de réacteur nucléaire / Modeling of dissolution phenomena in early and late phases of a severe accident

Cette thèse porte sur la modélisation des phénomènes de dissolution lors de la phase précoce d'un accident grave de réacteur nucléaire. L'étude s'intéresse à la dissolution de céramiques solides (ZrO2 et UO2) par un métal liquide (Zr). En cas d'hypothétique accident grave dans un Réacteur à Eau Pressurisée, les phénomènes de dissolution jouent un rôle primordial dans l'aggravation de la dégradation et la fusion des oxydes à des températures parfois largement inférieures à leur température de fusion normale. Cela concerne en particulier les principaux constituants des crayons combustibles : les pastilles d'UO2 ainsi que la couche de ZrO2 formée sur la surface externe de la gaine qui vont subir une dissolution par le zircaloy des gaines à partir de 2100 K (la température de fusion de ces oxydes étant supérieure à 2800 K). Dans l'état actuel des connaissances, on peut supposer que les phénomènes de dissolution sont responsables, d'une part, de l'effondrement prématuré des crayons combustibles dans le cœur et, d'autre part, de la formation rapide d'un bain liquide en fond de cuve si des oxydes de fer sont présents. De nombreuses études expérimentales ont été menées sur ce sujet mais la modélisation n'est pas encore satisfaisante à ce jour. Les modèles actuels sont essentiellement des modèles 1D qui ne prennent pas en compte de façon explicite la convection naturelle ni la présence d'une zone de transition diphasique au niveau de l'interface métal / céramique. Un modèle 2D, décrivant les transferts de quantité de mouvement, de chaleur et de masse, établi par prise de moyenne volumique des équations microscopiques de transport a été développé. Ce modèle est basé sur des hypothèses d'équilibre thermique local et de non-équilibre massique local et s'inspire d'un modèle de solidification de mélanges binaires (P. Bousquet-Mélou, 2000). Sur le plan théorique, l'approche est identique. Cependant, la dissolution introduit des contraintes physico-numériques supplémentaires qu'il a fallu prendre en compte. La prise en compte des deux aspects mentionnés (convection et zone diphasique) constitue une nouveauté significative par rapport aux modèles existants. Le modèle a été ensuite étendu au cas ternaire grâce à des développements nouveaux permettant de résoudre certaines difficultés supplémentaires (ajout d'une équation d'espèce, relations d'équilibre non bijectives, plusieurs coefficients de diffusion à déterminer, indétermination sur les flux à l'interface, densité du solide non constante...) afin d'étudier la dissolution UO2 / Zr. Une validation des modèles obtenus est faite à partir de résultats expérimentaux de dissolution de creusets en ZrO2 et UO2 par le zircaloy liquide et montrent la bonne qualité prédictive de notre modèle. / This thesis focuses on the modeling of dissolution phenomena during the early phase of a serious accident of nuclear reactor. The study focuses on the dissolution of solid ceramic (ZrO2 and UO2) by a liquid metal (Zr). In case of hypothetical severe accident in a pressurized water reactor, the phenomena of dissolution play a role in the further decay and melting oxides at temperatures sometimes significantly below the normal melting temperature. This concerns in particular the main constituents of fuel rods : pellets of UO2 and ZrO2 layer formed on the outer surface of the sheath that will suffer by the dissolution of zircaloy sheaths from 2100 K (the melting temperature of these oxides being greater than 2800 K). In the present state of knowledge, we can assume that dissolution phenomena are responsible for, on the one hand, the premature collapse of the fuel rods in the heart and, on the other hand, the rapid formation of a liquid bath in the bottom of the tank where iron oxides are present. Many experimental studies have been conducted on this subject but modeling is not yet satisfactory today. Current models are essentially 1D models that do not explicitly account for natural convection nore the presence of a biphasic transition zone at the interface metal / ceramic. A 2D model describing the transfer of momentum, heat and mass, determined by taking average density of microscopic transport equations has been developed. This model is based on assumptions of local thermal equilibrium and non-local mass balance and it is based on a model of solidification of binary mixtures (P. Bousquet-Mélou, 2000). In theory, the approach is identical. However, the dissolution introduced physico-digital extra constraint that had to be taken into account. Taking into account the two aspects mentioned (convection and two-phase zone) is a novelty in comparison to existing models. The model was then extended to the ternary case with new developments to resolve certain difficulties (addition of an equation of this case, non-bijective equilibrium relations, several diffusion coefficients to be determined, uncertainty on flows in interface, density of the solid non-constant ...) to study the dissolution UO2 / Zr. Validation of models is obtained from experimental results of dissolution of crucibles of UO2 and ZrO2 by liquid zircaloy and show the quality of our predictive model.

Identiferoai:union.ndltd.org:theses.fr/2009ECAP0008
Date09 February 2009
CreatorsBelloni, Julien
ContributorsChâtenay-Malabry, Ecole centrale de Paris, Goyeau, Benoît
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0022 seconds