Return to search

Investigation of mm-wave imaging and radar systems

In the last decade, microwave and millimeter-wave systems have gained importance in civil and security applications. Due to an increasing maturity and availability of circuits and components, these systems are getting more compact while being less expensive. Furthermore, quantitative imaging has been conducted at lower frequencies using computational intensive inverse problem algorithms. Due to the ill-posed character of the inverse problem, these algorithms are, in general, very sensitive to noise: the key to their successful application to experimental data is the precision of the measurement system. Only a few research teams investigate systems for imaging in the W-band. In this manuscript such a system is presented, designed to provide scattered field data to quantitative reconstruction algorithms. This manuscript is divided into six chapters. Chapter 2 describes the theory to compute numerically the scattered fields of known objects. In Chapter 3, the W-band measurement setup in the anechoic chamber is shown. Preliminary measurement results are analyzed. Relying on the measurement results, the error sources are studied and corrected by post-processing. The final results are used for the qualitative reconstruction of all three targets of interest and to image quantitatively the small cylinder. The reconstructed images are compared in detail in Chapter 4. Close range imaging has been investigated using a vector analyzer and a radar system. This is described in Chapter 5, based on a future application, which is the detection of FOD on airport runways. The conclusion is addressed in Chapter 6 and some future investigations are discussed.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00832647
Date11 January 2013
CreatorsZeitler, Armin
PublisherUniversité Nice Sophia Antipolis
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageEnglish
TypePhD thesis

Page generated in 0.0024 seconds