Mineração de Dados é um processo de natureza iterativa e interativa responsável por identificar padrões em grandes conjuntos de dados, objetivando extrair conhecimento válido, útil e inovador a partir desses. Em Mineração de Dados, Regras de Associação é uma técnica que consiste na identificação de padrões intrínsecos ao conjunto de dados. Essa técnica tem despertado grande interesse nos pesquisadores de Mineração de Dados e nas organizações, entretanto, a mesma possui o inconveniente de gerar grande volume de conhecimento no formato de regras, dificultando a análise e interpretação dos resultados pelo usuário. Nesse contexto, este trabalho tem como objetivo principal generalizar e eliminar Regras de Associação não interessantes e/ou redundantes, facilitando, dessa maneira, a análise das regras obtidas com relação à compreensibilidade e tamanho do conjunto de regras. A generalização das Regras de Associação é realizada com o uso de taxonomias. Entre os principais resultados deste trabalho destacam-se a proposta e a implementação do algoritmo GART e do módulo computacional RulEE-GAR. O algoritmo GART (Generalization of Association Rules using Taxonomies - Generalização de Regras de Associação usando Taxonomias) utiliza taxonomias para generalizar Regras de Associação. Já o módulo RulEE-GAR, além de facilitar o uso do algoritmo GART durante a identificação de taxonomias e generalização de regras, provê funcionalidades para analisar as Regras de Associação generalizadas. Os experimentos realizados, neste trabalho, mostraram que o uso de taxonomias na generalização de Regras de Associação pode reduzir o volume de um conjunto de regras. / Data Mining refers to the process of finding patterns in large data sets. The Association Rules in Data Mining try to identify intrinsic behaviors of the data set. This has motivated researchers of Data Mining and organizations. However, the Association Rules have the inconvenient of generating a great amount of knowledge in the form of rules. This makes the analysis and interpretation of the results difficult for the user. Taking this into account, the main objective of this research is the generalization and elimination of non-interesting and/or redundant Association Rules. This facilite the analysis of the rules with respect to the compreensibility and the size of the rule set. The generalization is realized using taxonomies. The main results of this research are the proposal and the implementation of the algorithm GART and of the computational module RulEE-GAR. The algorithm GART (Generalization of Association Rules using Taxonomies) uses taxonomies to generalize Association Rules. The module RulEE-GAR facilitates the use of the algorithm GART in the identification of taxonomies and generalization of rules and provide functionalities to the analysis of the generalized Association Rules. The results of experiments showed that the employment of taxonomies in the generalization of Association Rules can reduce the size of a rule set.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-10082004-154242 |
Date | 27 April 2004 |
Creators | Domingues, Marcos Aurélio |
Contributors | Rezende, Solange Oliveira |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0021 seconds