Sistemas de informações geográficas permitem armazenar, manipular e armazenar, manipular e analisar dados espaciais e aspectos descritivos desses dados. A análise de dados espaciais pode ser realizada por meio de técnicas de extração de regras de associação, ou seja, regras que descrevem relacionamentos entre os dados. Porém, a mineração de regras de associação não considera as relações topológicas existentes entre dados georreferenciados. Para solucionar esse problema, Koperski and Han (1995) e Malerba et al. (2001) propuseram um processo de extração de regras integrado ao algoritmo de mineração e utilizavam predicados lógicos para representar as regras. Como alternativa a essa solução, este trabalho propõe pré-processar os dados referenciados para encontrar relações topológicas em separado e aplicar um algoritmo de mineração de regras de associação disponí?vel pela comunidade acadêmica. As regras geradas devem apresentar características descritivas dos dados e relações topológicas. Para atingir esse objetivo foi especificado um processo de extração de regras em dados georreferenciados e implementado um módulo de pré-processamento que extrai relações topológicas. O módulo foi avaliado por meio de um estudo de caso utilizando o sistema de informação geográfica da cidade de Jaboticabal, no contexto de planejamento urbano. As regras encontradas foram analisadas por um especialista utilizando as medidas de suporte e confiança. Além disso, uma análise sobre o tempo de processamento e consumo de memória para encontrar as relações topológicas foi realizada, mostrando que é possível extrair padrões utilizando o processo e o módulo proposto neste trabalho. / Geographic information systems are used to store, manipulate, and analyze spatial data and its descriptive aspects. Spatial data analysis can be done by searching association rules that describe relationships between the data. However, georeferenced data present topological relations unknown to traditional mining association rule algorithms. To solve this problem, Koperski and Han (1995) and Malerba et al. (2001) proposed a topological relation extraction process integrated to a mining association rule algorithm. This process requires all data to be translated as logical predicates. As an alternative to this solution, this work proposes to break down this process by pre-processing the georeferenced data to find topological relations, then executing traditional mining association rule algorithms. The resulting rules must present descriptive characteristics of the data and topological relations. To reach this objective, a process of rule extraction in georeferenced data was specified, in addition to a pre-processing module implementation. This module was evaluated by using a case study that uses a geographic information system of the city of Jaboticabal, in the context of urban planning. The generated rules were analyzed by a specialist using the measures of support and confidence. In addition, an analysis regarding the processing time and memory consumption was provided to find the topological relations, which shows that it is possible to extract the patterns with the proposed process and module.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-18092006-104657 |
Date | 21 March 2006 |
Creators | Marina Abichabki Pivato |
Contributors | Solange Oliveira Rezende, Luis Otavio Campos Alvares, Maria Carolina Monard |
Publisher | Universidade de São Paulo, Ciências da Computação e Matemática Computacional, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0017 seconds